This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We have discovered a striking example of remodeling of the sphingolipid (SL) metabolic pathway in the trypanosomatid protozoan Leishmania. In most eukaryotes, SLs are critical membrane components and signaling molecules, but our previous studies showed that Leishmania lacking the enzyme serine palmitoyltransferase (spt2-) lacked SLs and grew relatively normally. Their membranes contained the expected microdomains, but the spt2- mutants were defective in stationary phase differentiation and virulence. Surprisingly, similar phenotypes were observed in a degradatory SL mutant lacking the enzyme sphingosine 1-phosphate lyase (spl-). This epistatic interaction suggested that a downstream metabolite other than SLs were responsible for the phenotypic abnormalities. We demonstrated that in Leishmania, unlike other organisms, the SL pathway has evolved to be the major route for ethanolamine (EtN) synthesis and that EtN supplementation completely reversed the phenotypic abnormalities in viability and differentiation exhibited by both mutants. Thus, Leishmania has undergone two major metabolic shifts. The first is to de-emphasize the roles of SLs themselves for growth and differentiation, and this might reflect a unique combination of abundant membrane lipids in this parasite. Freed from constraints imposed in other eukaryotes to maintain precise levels of critical sphingolipid-derived signaling molecules, Leishmania have also been able to remodel SL metabolism towards a role in bulk EtN synthesis.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000954-32
Application #
7953933
Study Section
Special Emphasis Panel (ZRG1-BPC-H (40))
Project Start
2009-02-01
Project End
2010-01-31
Budget Start
2009-02-01
Budget End
2010-01-31
Support Year
32
Fiscal Year
2009
Total Cost
$3,956
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Yue, Xuyi; Dhavale, Dhruva D; Li, Junfeng et al. (2018) Design, synthesis, and in vitro evaluation of quinolinyl analogues for ?-synuclein aggregation. Bioorg Med Chem Lett 28:1011-1019
Cade, W Todd; Levy, Philip T; Tinius, Rachel A et al. (2017) Markers of maternal and infant metabolism are associated with ventricular dysfunction in infants of obese women with type 2 diabetes. Pediatr Res 82:768-775
Lucey, Brendan P; Mawuenyega, Kwasi G; Patterson, Bruce W et al. (2017) Associations Between ?-Amyloid Kinetics and the ?-Amyloid Diurnal Pattern in the Central Nervous System. JAMA Neurol 74:207-215
Ohlemacher, Shannon I; Giblin, Daryl E; d'Avignon, D André et al. (2017) Enterobacteria secrete an inhibitor of Pseudomonas virulence during clinical bacteriuria. J Clin Invest 127:4018-4030
Lin, Xiaobo; Racette, Susan B; Ma, Lina et al. (2017) Endogenous Cholesterol Excretion Is Negatively Associated With Carotid Intima-Media Thickness in Humans. Arterioscler Thromb Vasc Biol 37:2364-2369
Ovod, Vitaliy; Ramsey, Kara N; Mawuenyega, Kwasi G et al. (2017) Amyloid ? concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement 13:841-849
Wei, Xiaochao; Song, Haowei; Yin, Li et al. (2016) Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 539:294-298
Shields-Cutler, Robin R; Crowley, Jan R; Miller, Connelly D et al. (2016) Human Metabolome-derived Cofactors Are Required for the Antibacterial Activity of Siderocalin in Urine. J Biol Chem 291:25901-25910
Mertins, Philipp; Mani, D R; Ruggles, Kelly V et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55-62
Murata, Takahiro; Dietrich, Hans H; Horiuchi, Tetsuyoshi et al. (2016) Mechanisms of magnesium-induced vasodilation in cerebral penetrating arterioles. Neurosci Res 107:57-62

Showing the most recent 10 out of 696 publications