We are studying the structure and function of signal transduction proteins, specifically heterotrimeric GTP-binding proteins (G proteins) and G protein-coupled receptors (GPCRs). When an agonist such as a hormone or neurotransmitter binds its receptor, exchange of GTP for GDP bound to the G protein is catalyzed. The GTP-bound alpha subunit of the G protein separates from the beta-gamma subunit complex, and each of these can go on to stimulate downstream effectors. The hydrolysis of GTP to GDP by the alpha subunit and subsequent hterotrimer reassembly turns off the signal. While the structures of some G protein subunits have been solved, atomic-level structures have not been determined for the receptors. Our specific goals are to understand the structural basis of function by designing and evaluating mutant forms of the G proteins and receptors. One category of mutants will contain two or more histidines placed so that they could be bridged by a metal ion. Such a link could cause metal-dependent activation or inactivation of the protein. In known structures, this would enhance our knowledge of the activation process; in unknown structures, this would also yield information on the proximity of regions of the protein. Another category of mutants arises from random mutagenesis. Experiments include purified protein assays, functional assays in mammalian cell lines, and a yeast growth assay where the """"""""readout"""""""" is a large number of receptor sequences capable of signalling. The Computer Graphics Laboratory facilities are crucial for many steps of this research: viewing crystallographic or modelled structures to design mutants, to rationalize the properties of the mutants, to develop hypotheses about protein-ligand and protein-protein interactions, and to develop hypotheses of conformational changes involved in activation and deactivation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001081-22
Application #
6119211
Study Section
Project Start
1999-07-01
Project End
2000-06-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
22
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Kozak, John J; Gray, Harry B; Garza-López, Roberto A (2018) Relaxation of structural constraints during Amicyanin unfolding. J Inorg Biochem 179:135-145
Alamo, Lorenzo; Pinto, Antonio; Sulbarán, Guidenn et al. (2018) Lessons from a tarantula: new insights into myosin interacting-heads motif evolution and its implications on disease. Biophys Rev 10:1465-1477
Portioli, Corinne; Bovi, Michele; Benati, Donatella et al. (2017) Novel functionalization strategies of polymeric nanoparticles as carriers for brain medications. J Biomed Mater Res A 105:847-858
Alamo, Lorenzo; Koubassova, Natalia; Pinto, Antonio et al. (2017) Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function. Biophys Rev 9:461-480
Nguyen, Hai Dang; Yadav, Tribhuwan; Giri, Sumanprava et al. (2017) Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1. Mol Cell 65:832-847.e4
Sofiyev, Vladimir; Kaur, Hardeep; Snyder, Beth A et al. (2017) Enhanced potency of bivalent small molecule gp41 inhibitors. Bioorg Med Chem 25:408-420
Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter et al. (2017) Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures. Biophys J 113:2344-2353
Chu, Shidong; Zhou, Guangyan; Gochin, Miriam (2017) Evaluation of ligand-based NMR screening methods to characterize small molecule binding to HIV-1 glycoprotein-41. Org Biomol Chem 15:5210-5219
Nekouzadeh, Ali; Rudy, Yoram (2016) Conformational changes of an ion-channel during gating and emerging electrophysiologic properties: Application of a computational approach to cardiac Kv7.1. Prog Biophys Mol Biol 120:18-27
Towse, Clare-Louise; Vymetal, Jiri; Vondrasek, Jiri et al. (2016) Insights into Unfolded Proteins from the Intrinsic ?/? Propensities of the AAXAA Host-Guest Series. Biophys J 110:348-361

Showing the most recent 10 out of 508 publications