T-cell contact with antigen-presenting cells (APC) initiates an activation cascade which includes an increase in T-cell intracellular calcium and leads to T-cell proliferation and differentiation. Although T-cell/APC physical contact is required for an immune response, little is known about the patterns of cellular interaction and their relation to activation. We have combined fluorescence spectroscopy and imaging with optical manipulation to investigate the physical properties of T-cell activation. We study cell-cell contact requirements for T-cell activation using optical tweezers to control the orientation of T-cell/APC pairs and fluorescence microscopy to measure the subsequent T-cell intracellular calcium level ([Ca2+]i) response. T cells which are presented with antigen at the leading edge have a higher probability of responding and a shorter latency of response than those contacting APCs or antibody-coated beads with their trailing end. Alterations in anti body dens ity and bead size are used to determine the spatial requirements for T cell activation and the minimum number of receptors which must be engaged in order to transmit a positive signal. Results show that T cell responses (response percentage, latency and [Ca2+]i pattern) depend on both antibody density on bead and bead size. ~340 TCRs are required to be engaged for intracellular calcium level increase in T cell activation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR001192-20S1
Application #
6220391
Study Section
Project Start
1999-04-01
Project End
2000-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
20
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of California Irvine
Department
Type
DUNS #
161202122
City
Irvine
State
CA
Country
United States
Zip Code
92697
Paugh, Jerry R; Alfonso-Garcia, Alba; Nguyen, Andrew Loc et al. (2018) Characterization of expressed human meibum using hyperspectral stimulated Raman scattering microscopy. Ocul Surf :
Verdel, Nina; Lentsch, Griffin; Balu, Mihaela et al. (2018) Noninvasive assessment of skin structure by combined photothermal radiometry and optical spectroscopy: coregistration with multiphoton microscopy. Appl Opt 57:D117-D122
Friedman, Jacob E; Dobrinskikh, Evgenia; Alfonso-Garcia, Alba et al. (2018) Pyrroloquinoline quinone prevents developmental programming of microbial dysbiosis and macrophage polarization to attenuate liver fibrosis in offspring of obese mice. Hepatol Commun 2:313-328
Kennedy, Gordon T; Lentsch, Griffin R; Trieu, Brandon et al. (2017) Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics. J Biomed Opt 22:76013
Takesh, Thair; Sargsyan, Anik; Lee, Matthew et al. (2017) Evaluating the Whitening and Microstructural Effects of a Novel Whitening Strip on Porcelain and Composite Dental Materials. Dentistry (Sunnyvale) 7:
Jonscher, Karen R; Stewart, Michael S; Alfonso-Garcia, Alba et al. (2017) Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. FASEB J 31:1434-1448
Alfonso-García, Alba; Paugh, Jerry; Farid, Marjan et al. (2017) A machine learning framework to analyze hyperspectral stimulated Raman scattering microscopy images of expressed human meibum. J Raman Spectrosc 48:803-812
Takesh, Thair; Sargsyan, Anik; Anbarani, Afarin et al. (2017) Effects of a Novel Whitening Formulation on Dental Enamel. Dentistry (Sunnyvale) 7:
Alfonso-García, Alba; Smith, Tim D; Datta, Rupsa et al. (2016) Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy. J Biomed Opt 21:46005
Prince, Richard C; Frontiera, Renee R; Potma, Eric O (2016) Stimulated Raman Scattering: From Bulk to Nano. Chem Rev :

Showing the most recent 10 out of 663 publications