Organisms from all kingdoms of life use photoreceptors to constantly monitor their light environment and regulate their behavior and development accordingly. All known biological photoreceptors are formed by a molecular team consisting of a bound organic molecule (called the chromophore) and a protein component. The chromophore absorbs the light and as a result undergoes a defined photochemical reaction. The change in the chromophore is then sensed by the protein component and translated into a protein structural change that then in turn activates a signal transduction cascade. While this general scheme is well known for a long time, the molecular details of this process have not been well understood. Photoactive Yellow Protein is a small bacterial photoreceptor that has proven to be very amenable to structural and biophysical studies and therefore offers the opportunity to ivestigate the light driven signaling process of a biological photoreceptor in molecular detail. Combination of a novel cryo-trapping strategy with sub E X-ray diffraction allowed us to determine the structure of a very shortlived, early intermediate in the light cycle of the bacterial light sensor Photoactive Yellow Protein. This structure shows for the first time, how rapid chromophore isomerization can occur in the interior of a receptor protein and suggests how the protein uses the absorbed photon to drive the remaining signaling cycle. The insights gained do not only drive our basic understanding of an important biological function but might also help us design protein based light sensors for biotechnological applications.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-20
Application #
6119413
Study Section
Project Start
1999-03-01
Project End
2000-04-14
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
20
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
800771545
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Morrison, Christine N; Spatzal, Thomas; Rees, Douglas C (2017) Correction to Reversible Protonated Resting State of the Nitrogenase Active Site. J Am Chem Soc 139:13958
Remesh, Soumya G; Andreatta, Massimo; Ying, Ge et al. (2017) Unconventional Peptide Presentation by Major Histocompatibility Complex (MHC) Class I Allele HLA-A*02:01: BREAKING CONFINEMENT. J Biol Chem 292:5262-5270

Showing the most recent 10 out of 604 publications