Glucosanine 6-phosphate deaminases from E. coli and from mammalian species are allosteric enzymes. The current knowledge about the kinetics indicate that this enzyme may be a useful system for the study of allosteric transitions. Moreover the human enzyme has a.a. identity of 50% in relation to the E. coli enzyme, is 23 a.a. longer at its C-terminus, and changes drastically its allosteric properties, from a K-pure system in E. coli to a V-pure system in human. We have measured at Stanford, the diffraction data of the human R-conformer (77% of the data at 2.4 E resolution). The crystal have a hexamer (1734 residues) in the asymmertic unit. The refinement is under process but with the available data we found only 8 of the 23 a.a. at the C-terminal. In the E.coli T structure that we measured at SSRL this year we detected that the active-site lid has large B-factors which is associated to an enthropic term associated with the allosteric transition. This is the first time that structural data on an allosteric enzyme relates atom mobility to regulation properties and we plan to measure this crystals an other complexes of this enzyme to higher resolution to evaluate anisotropic B factors to relate specific vibrational modes to this entropic allosteric effect.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-20
Application #
6119417
Study Section
Project Start
1999-03-01
Project End
2000-04-14
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
20
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
800771545
City
Stanford
State
CA
Country
United States
Zip Code
94305
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Dods, Robert; Båth, Petra; Arnlund, David et al. (2017) From Macrocrystals to Microcrystals: A Strategy for Membrane Protein Serial Crystallography. Structure 25:1461-1468.e2
de Vries, Robert P; Tzarum, Netanel; Peng, Wenjie et al. (2017) A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors. EMBO Mol Med 9:1314-1325

Showing the most recent 10 out of 604 publications