This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Lignins, lignans and isoflavonoids are major constituents of vascular plants and account for nearly 30% of the organic carbon circulating in the biosphere. This research project focuses on three enzymes that have critical roles in lignan and isoflavonoid biosynthesis. Lignans and isoflavonoids play important roles in plant defense and communication, helping hosts discriminate between biological pathogens and symbiotic non-pathogens. In addition to their physiological roles in plants, these compounds have pronounced antimicrobial, antifungal, antiviral, antioxidant and anticancer properties. Therefore, isoflavonoid and lignan are used as pharmacologicals, especially for the clinical treatment of various cancers. It is generally accepted that low cancer incidence in people with plant-based diets is due to the preventive effect of these lignans and isoflavonoids. For these reasons, there is considerable interest in making these compounds more generally available by defining and exploiting the lignan and isoflavonoid biosynthetic pathways. These approaches are seriously hampered by a lack of detailed information on the involving enzymes and by limited success in obtaining these compounds using tissue (or cell) culture. The goal of this project is to define the structure-function relationships of the critical enzymes in lignan and isoflavonoid biosynthesis through high-resolution x-ray structures. The information gained from these studies will be very useful for exploring the regulation of lignans and isoflavonoids for ecological plant protection, and industrial-scale regiospecific and stereospecific synthesis

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-28
Application #
7597896
Study Section
Special Emphasis Panel (ZRG1-BPC-E (40))
Project Start
2007-03-01
Project End
2008-02-29
Budget Start
2007-03-01
Budget End
2008-02-29
Support Year
28
Fiscal Year
2007
Total Cost
$4,164
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Hettle, Andrew; Fillo, Alexander; Abe, Kento et al. (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of ?-1,3-glucan. J Biol Chem 292:16955-16968
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O et al. (2017) Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci Rep 7:44628

Showing the most recent 10 out of 604 publications