This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The biological reduction of dinitrogen to ammonia is achieved in MoFe nitrogenase at a remarkable Fe7S9MoX cluster termed FeMocofactor. Despite the availability of high resolution crystal structures, the site of substrate binding and mechanism of subsequent reduction remain unclear. Both Fe and Mo sites have been proposed as the locus of substrate chemistry, and it been suggested that the cofactor may adopt a more open conformation as part of turnover. EXAFS is clearly an ideal technique to help resolve these issues ? substrate binding should be directly observable and cofactor conformational change should be apparent through changes in ?longrange? Mo-Fe and Fe-Fe interactions. However, previous EXAFS structural studies have been limited by the inherent inability of the enzyme to be isolated in pure reduced, substrate bound states. With our collaborator Lance Seefeldt, we propose to use EXAFS to substrates bound to appropriately SGM modified MoFe nitrogenase. Work in the Seefeldt laboratory has prepared SGM variants, such as 70Ala, which, allow preparation of bound intermediate states in high yield. These currently include bound propargyl alcohol and hydrazine as well as other intermediates. In addition, with our collaborator Paul Ludden, we plan to exploit the ability of the FeMoco biosynthesis protein NafY to coordinate FeMoco, provide a small protein model of the MoFe active center. These studies should enable us to determine the whether Fe or Mo sites (or both!) coordinate substrates and intermediates and whether the FeMo-cofactor is structurally modified as part of turnover. This information should assist with the eventual elucidation of the mechanism of the environmentally important enzyme. In addition, the novel bioinorganic chemistry uncovered could well lead to the development of novel catalysts.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-29
Application #
7721842
Study Section
Special Emphasis Panel (ZRG1-BPC-E (40))
Project Start
2008-03-01
Project End
2009-02-28
Budget Start
2008-03-01
Budget End
2009-02-28
Support Year
29
Fiscal Year
2008
Total Cost
$8,797
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Hettle, Andrew; Fillo, Alexander; Abe, Kento et al. (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of ?-1,3-glucan. J Biol Chem 292:16955-16968
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O et al. (2017) Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci Rep 7:44628

Showing the most recent 10 out of 604 publications