This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Pathogenic bacteria such as Vibrio cholerae employ Type II Secretion Systems for the export of their infections agent such as cholera toxin through the outer membrane. While the pore is located in the outer membrane, the system is energized by a cytoplasmic secretion ATPase (EpsE). EpsE is linked to the rest of the system via the bitopic inner membrane protein EpsL. Various reports from related systems, e.g. Type III Secretion, Type IV Pili, indicate that nucleotide binding has a dramatic effect on the oligomeric state of EpsE, and that the oligomeric state has an effect on the ATPase activity. However, there are indications that the oligomerization pattern of EpsE in complex with the cytoplasmic domain of EpsL (cyto-EpsL) differs from the current dogma. We have evidence that EpsE (E) and cyto-EpsL (cL) form oligomeric assemblies at minimum E2cL2, and likely E6cL6, in the presence of nucleotides. We propose to conduct solution x-ray scattering studies to investigate these assemblies as a function of different nucleotides, Mg as well as of temperature to complement our on-going crystallographic studies on this system.
Our aim i s to identify the physiologically relevant form of assemblies and find solution condition to stabilize it for higher resolution studies.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-29
Application #
7722079
Study Section
Special Emphasis Panel (ZRG1-BPC-E (40))
Project Start
2008-03-01
Project End
2009-02-28
Budget Start
2008-03-01
Budget End
2009-02-28
Support Year
29
Fiscal Year
2008
Total Cost
$1,330
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Dods, Robert; Båth, Petra; Arnlund, David et al. (2017) From Macrocrystals to Microcrystals: A Strategy for Membrane Protein Serial Crystallography. Structure 25:1461-1468.e2
de Vries, Robert P; Tzarum, Netanel; Peng, Wenjie et al. (2017) A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors. EMBO Mol Med 9:1314-1325

Showing the most recent 10 out of 604 publications