This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. To investigate mechanisms of catalysis, allosteric regulation, and drug interactions of CTP synthetases (CTPSs), we will solve structures from a variety of sources in their apo, substrate-bound,and nucleotide-regulated forms. CTPSs are key conserved nucleotide biosynthesic enzymes and are targets for anti-neoplastic,anti-fungal,and anti-parasitic agents, some of which could provide useful eventually for treatment of HIV patients. CTPS catalyzes an ATP-dependent aminotransfer reaction from glutamine to UTP in the last step of pyrimidine biosynthesis. In addition, EcCTPS is repressed by its product, CTP, but is activated by GTP,and regulated by phosphorylation in yeast. We recently solved the 2.3 ? resolution structure of the Apo E.coli enzyme (EcCTPS), the first enzyme in this class. To identify ligand-binding sites, to map the atomic level interactions, and to investigate regulatory mechanisms, we will determine the structures key ligand CTPS complexes. In addition, we will also determine the CTPS structures in complex with existing thereapeutic compounds to understand mode of action and the evolution of resistance. Finally, the structures of human, yeast, T. brucei, and Chlamydia enzymes will provide substrates for structure-based drug design of species-specific therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-30
Application #
7954189
Study Section
Special Emphasis Panel (ZRG1-BPC-E (40))
Project Start
2009-03-01
Project End
2010-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
30
Fiscal Year
2009
Total Cost
$2,557
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Hettle, Andrew; Fillo, Alexander; Abe, Kento et al. (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of ?-1,3-glucan. J Biol Chem 292:16955-16968
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O et al. (2017) Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci Rep 7:44628

Showing the most recent 10 out of 604 publications