This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Bacterial biosynthesis of lysine forms an attractive target for the design of new antimicrobial agents because this pathway is indispensable for bacteria and is absent in humans. We have undertaken structural investigations on enzyme targets involved in the biosynthesis of lysine from bacterial pathogens and plants. Crystal structures of two of these enzymes, namely, diaminopimelate epimerase from Haemophilus influenzae and LL-diaminopimelate aminotransferase from Arabidopsis thaliana have been determined recently. Structural work is continuing on these enzymes in complex with inhibitors and of mutant forms to understand details of the catalytic mechanism for the design of effective inhibitors. Recently, we have obtained crystals of the diaminopimelate epimerase from Arabidopsis. Also, crystallization trials are currently underway on the diaminopimelate aminotransferase from the human pathogen, Chlamydia. We have an ongoing collaboration for high-throughput screening of 80,000 chemical compounds in order to find potential inhibitor leads for crystallographic analysis in our drug design efforts against Chlamydial infections. Other targets undergoing crystallization trials include diaminopimelate desuccinylase from the tuberculosis causing mycobacteria. In order to achieve the best possible resolution and quality of diffraction data, as well as for de novo structure solution using MAD/SAD methods, we require access to the synchrotron beamlines for macromolecular crystallography.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001209-31
Application #
8170135
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2010-05-01
Project End
2011-02-28
Budget Start
2010-05-01
Budget End
2011-02-28
Support Year
31
Fiscal Year
2010
Total Cost
$346
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Morrison, Christine N; Spatzal, Thomas; Rees, Douglas C (2017) Reversible Protonated Resting State of the Nitrogenase Active Site. J Am Chem Soc 139:10856-10862
Zhang, Haonan; Qiao, Anna; Yang, Dehua et al. (2017) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259-264

Showing the most recent 10 out of 604 publications