This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. This is a proposal describing research into multi-domain and multi-protein assemblies under study in our labs. The Gulick lab is investigating the structural arrangement of non-ribosomal peptide synthetases (NRPSs). These modular proteins catalyze the synthesis of peptides antibiotics and peptide siderophores using amino acid and peptide intermediates that are covalently bound to a carrier domain that delivers substrates to the necessary catalytic domains in a coordinated fashion. The choreography of this assembly line synthesis is being investigated through biochemical studies and structural investigations of multi-domain proteins trapped in catalytically relevant states. Additional projects investigate auxiliary proteins that function with NRPS enzymes in the synthesis of natural products. The Gewirth lab studies the multi-domain HSP90 class of molecular chaperones. Questions at the forefront of the field currently center on the development of inhibitory ligands of high specificity, as well as understanding the mechanistic differences between cytoplasmic Hsp90 and GRP94. We are using x-ray crystallography in combination with biochemical and cell-based assays to study the interaction of the hsp90 family of molecular chaperones with novel small molecule inhibitory ligands.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001209-31
Application #
8170304
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2010-05-01
Project End
2011-02-28
Budget Start
2010-05-01
Budget End
2011-02-28
Support Year
31
Fiscal Year
2010
Total Cost
$346
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Hettle, Andrew; Fillo, Alexander; Abe, Kento et al. (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of ?-1,3-glucan. J Biol Chem 292:16955-16968
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O et al. (2017) Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci Rep 7:44628

Showing the most recent 10 out of 604 publications