This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Oxygen, that supports all aerobic life, is abundant in the atmosphere because of its constant regeneration by photosynthetic water oxidation by green plants, algae and cyanobacteria. This light-requiring reaction is catalyzed by a Mn4Ca cluster associated with photosystem II (PS II). Given the role of PS II in maintaining life on the biosphere and the future visions of a renewable energy economy, it is vital to elucidate the structure and mechanism of the Mn4Ca catalyst, which is sometimes referred to as the ?heart? of the water oxidation process. Although, the electronic and geometric structure of the Mn4Ca water-splitting catalyst has been extensively investigated, the precise structure and mechanism of this catalyst has so far eluded all attempts of determination by x-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS) and other spectroscopic techniques. The development of new methods of high resolution absorption and emission x-ray spectroscopy, including x-ray Raman spectroscopy, range-extended EXAFS and site-selective X-ray spectroscopy are critical for providing important new information, that will help in elucidating not only the structure of the complex, but also the mechanism of the photosynthetic water oxidation process. The present proposal builds on the past experiments and addresses some new applications of x-ray emission spectroscopy to the Mn complex in PS II as follows: a) X-ray Raman or RIXS spectroscopy that will address the electronic structure of the Mn complex, b) Kbeta emission and site selective spectroscopy that will selectively probe different Mn sites or different oxidation states in the Mn complex, c) High resolution Mn Kalpha detection of EXAFS that will allow us to collect EXAFS beyond the Fe K-edge thus improving resolution and d) Interatomic Mn Kbeta2,5 spectra that will be a probe for the ligand atoms of Mn, especially to ascertain whether chloride is a ligand of Mn in PS II.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-32
Application #
8362123
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2011-03-01
Project End
2012-02-29
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
32
Fiscal Year
2011
Total Cost
$17,286
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Morrison, Christine N; Spatzal, Thomas; Rees, Douglas C (2017) Reversible Protonated Resting State of the Nitrogenase Active Site. J Am Chem Soc 139:10856-10862
Zhang, Haonan; Qiao, Anna; Yang, Dehua et al. (2017) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259-264

Showing the most recent 10 out of 604 publications