This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Pulmonary surfactant is the mixture of lipids and proteins that the lungs secrete to coat the thin layer of liquid that lines the alveolar air spaces. Its function is to lower surface tension, thereby preventing alveolar collapse at the end of exhalation. Two hydrophobic surfactant proteins, SPB and SP-C, which constitute less than 1.5% (w/w) of the complete mixture, are essential for normal function. The proteins promote adsorption of surfactant vesicles to the air/water interface, allowing surfactant films to form within seconds of creating the initial surface when a baby takes its first breath. Despite their importance, the mechanisms by which the proteins facilitate adsorption are uncertain. The proposed studies test hypotheses that follow from a model in which the proteins stabilize a rate-determining, negatively curved structure that bridges the gap between the bilayer of a surfactant vesicle and the air/water interface. Our experiments will determine if: (1) dispersed constituents, which initially form unilamellar vesicles (ULV) that can be detected by small angle X-ray scattering (SAXS), must transform to multilamellar vesicles (MLV), measured by small angle X-ray diffraction (SAXD), to adsorb rapidly;(2) the SPs alter the spontaneous curvature of lipid leaflets, obtained from the d-spacing produced by SAXD from hexagonal-II (HII) structures;(3) the SPs alter the bending modulus, obtained from the shape of the diffraction peaks generated by MLV with and without the proteins.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-32
Application #
8362124
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2011-03-01
Project End
2012-02-29
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
32
Fiscal Year
2011
Total Cost
$5,473
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Guillaume, Joren; Wang, Jing; Janssens, Jonas et al. (2017) Galactosylsphingamides: new ?-GalCer analogues to probe the F'-pocket of CD1d. Sci Rep 7:4276
Ishigami, Izumi; Zatsepin, Nadia A; Hikita, Masahide et al. (2017) Crystal structure of CO-bound cytochrome c oxidase determined by serial femtosecond X-ray crystallography at room temperature. Proc Natl Acad Sci U S A 114:8011-8016

Showing the most recent 10 out of 604 publications