Our ability to non-destructively hold and move objects within a living cell, with our optical trap, provides a opportunity to precisely measure the intra-cellular forces acting on these objects. However, measuring such forcesis not a trivial matter because of the irregular shape and composition of most biological structures. Since we are primarily concerned with chromosomes, we are using isolated and fixed chromosomes from CHO cells to calibrate our trap. First we determined the force produced by the trap on latex spheres of a know size and in a medium of known viscosity. To make this force determination, a sphere was trapped and the microscope stage moved at a constant velocity ( approximately 2f/min) while the power of the trap was reduced until the sphere escaped. By knowing the power level of the trap when sphere escaped, the viscosity of medium, and the sphere size the force could then be calculated based on Braggs laws of drag. We are currently substituting chromosomes for spheres and repeating this calibration. This is an ongoing project.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001219-15
Application #
5222965
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
1996
Total Cost
Indirect Cost
Booth, David M; Enyedi, Balázs; Geiszt, Miklós et al. (2016) Redox Nanodomains Are Induced by and Control Calcium Signaling at the ER-Mitochondrial Interface. Mol Cell 63:240-248
Takvorian, Peter M; Buttle, Karolyn F; Mankus, David et al. (2013) The multilayered interlaced network (MIN) in the sporoplasm of the microsporidium Anncaliia algerae is derived from Golgi. J Eukaryot Microbiol 60:166-78
Mannella, Carmen A; Lederer, W Jonathan; Jafri, M Saleet (2013) The connection between inner membrane topology and mitochondrial function. J Mol Cell Cardiol 62:51-7
Forbes, Stephen J; Martinelli, Daniel; Hsieh, Chyongere et al. (2012) Association of a protective monoclonal IgA with the O antigen of Salmonella enterica serovar Typhimurium impacts type 3 secretion and outer membrane integrity. Infect Immun 80:2454-63
Wang, Ruiwu; Zhong, Xiaowei; Meng, Xing et al. (2011) Localization of the dantrolene-binding sequence near the FK506-binding protein-binding site in the three-dimensional structure of the ryanodine receptor. J Biol Chem 286:12202-12
Marko, Michael; Leith, Ardean; Hsieh, Chyongere et al. (2011) Retrofit implementation of Zernike phase plate imaging for cryo-TEM. J Struct Biol 174:400-12
Springer, Deborah J; Ren, Ping; Raina, Ramesh et al. (2010) Extracellular fibrils of pathogenic yeast Cryptococcus gattii are important for ecological niche, murine virulence and human neutrophil interactions. PLoS One 5:e10978
Li, Chunhao; Sal, Melanie; Marko, Michael et al. (2010) Differential regulation of the multiple flagellins in spirochetes. J Bacteriol 192:2596-603
McEwen, Bruce F; Dong, Yimin (2010) Contrasting models for kinetochore microtubule attachment in mammalian cells. Cell Mol Life Sci 67:2163-72
Palladino, Michael J (2010) Modeling mitochondrial encephalomyopathy in Drosophila. Neurobiol Dis 40:40-5

Showing the most recent 10 out of 252 publications