During ischemia, the administration of excess homocysteine causes the formation of s-adenosylhomocysteine (SAH) from adenosine, via the enzyme SAH hydrolase, at a rate that reflects the intracellular adenosine concentration. Since homocysteine can be labeled with the positron emitter 11C, the detection of 11C-SAH by positron emission tomography (PET) shows promise as a clinical tool for identifying impaired myocardial energy balance noninvasively. The general hypothesis of this proposal is that quantitative PET imaging using 11C-HCTL can be used to identify regional myocardial energy imbalance during ischemia.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001243-18
Application #
6119779
Study Section
Project Start
1998-12-16
Project End
1999-11-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
18
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Bassingthwaighte, James B; Butterworth, Erik; Jardine, Bartholomew et al. (2012) Compartmental modeling in the analysis of biological systems. Methods Mol Biol 929:391-438
Dash, Ranjan K; Bassingthwaighte, James B (2010) Erratum to: Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng 38:1683-701
Bassingthwaighte, James B; Raymond, Gary M; Butterworth, Erik et al. (2010) Multiscale modeling of metabolism, flows, and exchanges in heterogeneous organs. Ann N Y Acad Sci 1188:111-20
Dash, Ranjan K; Bassingthwaighte, James B (2006) Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion. Ann Biomed Eng 34:1129-48
Dash, Ranjan K; Bassingthwaighte, James B (2004) Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng 32:1676-93
Kellen, Michael R; Bassingthwaighte, James B (2003) Transient transcapillary exchange of water driven by osmotic forces in the heart. Am J Physiol Heart Circ Physiol 285:H1317-31
Kellen, Michael R; Bassingthwaighte, James B (2003) An integrative model of coupled water and solute exchange in the heart. Am J Physiol Heart Circ Physiol 285:H1303-16
Wang, C Y; Bassingthwaighte, J B (2001) Capillary supply regions. Math Biosci 173:103-14
Swanson, K R; True, L D; Lin, D W et al. (2001) A quantitative model for the dynamics of serum prostate-specific antigen as a marker for cancerous growth: an explanation for a medical anomaly. Am J Pathol 158:2195-9
Swanson, K R; Alvord Jr, E C; Murray, J D (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33:317-29

Showing the most recent 10 out of 19 publications