The goals are (1) to develop the mixture analysis method for application to functional imaging in cardiac PET studies, and eventually implemented in our functional imaging software packages; and (2) to implement a Bayesian estimator in the least squares optimization scheme to improve parameter estimation with a priori knowledge. The mixture analysis method represents voxel-level time-activity curve (TAC) as a weighted sum of sub-TACs associated with tissue types in the imaging volume. By mathematical modeling of the sub-TACs, physiological parameters, such as the regional myocardial flow and oxygen consumption, can be estimated to construct functional images. We will test mixture analysis on dynamic PET images of [O-15]water and [O-15]oxygen obtained from intact dog and human hearts. First, we will test the segmentation algorithm from methodology point of view as well as from physiological point of view, because mixture analysis provides a new means to quantify the physiological heterogeneity. Then, we will test the Bayesian estimator for parameter estimation using the sub-TACs. Finally, we will test the algorithm for constructing parametric images in the context of mixture analysis.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001243-18
Application #
6119752
Study Section
Project Start
1998-12-16
Project End
1999-11-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
18
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Bassingthwaighte, James B; Butterworth, Erik; Jardine, Bartholomew et al. (2012) Compartmental modeling in the analysis of biological systems. Methods Mol Biol 929:391-438
Dash, Ranjan K; Bassingthwaighte, James B (2010) Erratum to: Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng 38:1683-701
Bassingthwaighte, James B; Raymond, Gary M; Butterworth, Erik et al. (2010) Multiscale modeling of metabolism, flows, and exchanges in heterogeneous organs. Ann N Y Acad Sci 1188:111-20
Dash, Ranjan K; Bassingthwaighte, James B (2006) Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion. Ann Biomed Eng 34:1129-48
Dash, Ranjan K; Bassingthwaighte, James B (2004) Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng 32:1676-93
Kellen, Michael R; Bassingthwaighte, James B (2003) Transient transcapillary exchange of water driven by osmotic forces in the heart. Am J Physiol Heart Circ Physiol 285:H1317-31
Kellen, Michael R; Bassingthwaighte, James B (2003) An integrative model of coupled water and solute exchange in the heart. Am J Physiol Heart Circ Physiol 285:H1303-16
Wang, C Y; Bassingthwaighte, J B (2001) Capillary supply regions. Math Biosci 173:103-14
Swanson, K R; True, L D; Lin, D W et al. (2001) A quantitative model for the dynamics of serum prostate-specific antigen as a marker for cancerous growth: an explanation for a medical anomaly. Am J Pathol 158:2195-9
Swanson, K R; Alvord Jr, E C; Murray, J D (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33:317-29

Showing the most recent 10 out of 19 publications