Heart transplantation is now an acceptable treatment alternative for select patients with end-stage heart disease. The five year survival for transplant recipients is over 70%. Unfortunately up to 40% of these transplant recipients will develop transplant coronary artery disease, a vasculopathy which is diffuse but generally remains undetected until its late states. It may be a form of chronic vascular rejection and when present, ultimately results in left ventricular dysfunction and failure of the graft. The investigators plan to test the hypothesis that vascular tissue, in particular endothelial cells, will reveal abnormalities in metabolism during heart transplant rejection, despite preserved coronary perfusion. The multiple indicator dilution technique will be used to assess adenosine uptake in an isolated rat heterotopic heart transplant preparation. The investigators will compare the endothelial adenosine flux in control syngeneic heart allografts to that of allogeneic rejecting heart allografts. Adenosine flux will also be assessed in a group of allogeneic heterotopic heart transplants from rats treated with cyclosporine and methylprednisolone.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001243-19
Application #
6308533
Study Section
Project Start
1999-12-01
Project End
2000-11-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
19
Fiscal Year
2000
Total Cost
$23,494
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Bassingthwaighte, James B; Butterworth, Erik; Jardine, Bartholomew et al. (2012) Compartmental modeling in the analysis of biological systems. Methods Mol Biol 929:391-438
Dash, Ranjan K; Bassingthwaighte, James B (2010) Erratum to: Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng 38:1683-701
Bassingthwaighte, James B; Raymond, Gary M; Butterworth, Erik et al. (2010) Multiscale modeling of metabolism, flows, and exchanges in heterogeneous organs. Ann N Y Acad Sci 1188:111-20
Dash, Ranjan K; Bassingthwaighte, James B (2006) Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion. Ann Biomed Eng 34:1129-48
Dash, Ranjan K; Bassingthwaighte, James B (2004) Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng 32:1676-93
Kellen, Michael R; Bassingthwaighte, James B (2003) Transient transcapillary exchange of water driven by osmotic forces in the heart. Am J Physiol Heart Circ Physiol 285:H1317-31
Kellen, Michael R; Bassingthwaighte, James B (2003) An integrative model of coupled water and solute exchange in the heart. Am J Physiol Heart Circ Physiol 285:H1303-16
Wang, C Y; Bassingthwaighte, J B (2001) Capillary supply regions. Math Biosci 173:103-14
Swanson, K R; True, L D; Lin, D W et al. (2001) A quantitative model for the dynamics of serum prostate-specific antigen as a marker for cancerous growth: an explanation for a medical anomaly. Am J Pathol 158:2195-9
Swanson, K R; Alvord Jr, E C; Murray, J D (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33:317-29

Showing the most recent 10 out of 19 publications