To elucidate the physiological role of the AMP-adenosine metabolic cycle and to investigate the relation between AMP and adenosine formation, oxygen supply of isolated guinea pig hearts was varied (95-10% O2). Net adenosine formation rate (AMP - adenosine) and coronary venous effluent adenosine release rate were measured; free cytosolic AMP was determined by 31P NMR. Switching from 95 to 40% O2 increased free AMP and adenosine formation 4-fold while free cytosolic adenosine and venous adenosine release rose 15-20 fold. In the AMP range from 200 to 3000 nmol/L there was a linear correlation between free AMP and adenosine formation; however, adenosine release increased several-fold more than formation. While at 95% O2 only 6% of adenosine formed were released, this fraction increased to 22% already at 40% O2 demonstrating reduced adenosine salvage. Selective blockade of adenosine deaminase and kinase indicated that flux through adenosine kinase decreased from 85 to 35% of adenosine formation in hypoxia. Mathematical model analysis indicated that this apparent decrease in enzyme activity was not due to saturation but to the inhibition of adenosine kinase activity to 6% of basal levels. The data show a) that adenosine formation is proportional to the AMP substrate concentration and b) that hypoxia decreases adenosine kinase activity; thereby shunting myocardial adenosine from the salvage pathway to venous release. In conclusion, because of the normal high turnover of the AMP-adenosine metabolic cycle, hypoxia-induced inhibition of adenosine kinase causes the amplification of small changes in free AMP into a major rise in adenosine. This mechanism plays an important role in the high sensitivity of the cardiac adenosine system to impaired oxygenation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001243-21
Application #
6603654
Study Section
Project Start
2001-12-01
Project End
2002-11-30
Budget Start
Budget End
Support Year
21
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Bassingthwaighte, James B; Butterworth, Erik; Jardine, Bartholomew et al. (2012) Compartmental modeling in the analysis of biological systems. Methods Mol Biol 929:391-438
Dash, Ranjan K; Bassingthwaighte, James B (2010) Erratum to: Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng 38:1683-701
Bassingthwaighte, James B; Raymond, Gary M; Butterworth, Erik et al. (2010) Multiscale modeling of metabolism, flows, and exchanges in heterogeneous organs. Ann N Y Acad Sci 1188:111-20
Dash, Ranjan K; Bassingthwaighte, James B (2006) Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion. Ann Biomed Eng 34:1129-48
Dash, Ranjan K; Bassingthwaighte, James B (2004) Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng 32:1676-93
Kellen, Michael R; Bassingthwaighte, James B (2003) Transient transcapillary exchange of water driven by osmotic forces in the heart. Am J Physiol Heart Circ Physiol 285:H1317-31
Kellen, Michael R; Bassingthwaighte, James B (2003) An integrative model of coupled water and solute exchange in the heart. Am J Physiol Heart Circ Physiol 285:H1303-16
Wang, C Y; Bassingthwaighte, J B (2001) Capillary supply regions. Math Biosci 173:103-14
Swanson, K R; True, L D; Lin, D W et al. (2001) A quantitative model for the dynamics of serum prostate-specific antigen as a marker for cancerous growth: an explanation for a medical anomaly. Am J Pathol 158:2195-9
Swanson, K R; Alvord Jr, E C; Murray, J D (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33:317-29

Showing the most recent 10 out of 19 publications