Biomaterials placed in the body are exposed to an aqueous environment andtherefore exist, in practice, in a hydrated state. In order to apply UHV techniques such as SIMS and ESCA to such samples, it is necessary to employ cryogenic methods to ensure that the material retains its hydrated state. This project represents a continuation of our efforts to develop and implement reproducible cryogenic methods which would enable the use of these techniques on hydrated biomaterials. Plunge cooling and impact cooling methods are being investigated for protein and cell samples.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001296-14
Application #
6119912
Study Section
Project Start
1998-07-01
Project End
1999-09-27
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
14
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Tyler, Bonnie J; Peterson, Richard E (2013) Dead-time correction for time-of-flight secondary-ion mass spectral images: a critical issue in multivariate image analysis. Surf Interface Anal 45:475-478
Tyler, B J; Bruening, C; Rangaranjan, S et al. (2011) TOF-SIMS imaging of adsorbed proteins on topographically complex surfaces with Bi(3) (+) primary ions. Biointerphases 6:135
Medzihradszky, Katalin F (2008) Characterization of site-specific N-glycosylation. Methods Mol Biol 446:293-316
Medzihradszky, Katalin F (2005) Peptide sequence analysis. Methods Enzymol 402:209-44
Sanders, Joan E; Lamont, Sarah E; Karchin, Ari et al. (2005) Fibro-porous meshes made from polyurethane micro-fibers: effects of surface charge on tissue response. Biomaterials 26:813-8
Medzihradszky, Katalin F (2005) In-solution digestion of proteins for mass spectrometry. Methods Enzymol 405:50-65
Medzihradszky, Katalin F (2005) Characterization of protein N-glycosylation. Methods Enzymol 405:116-38
Cheng, Xuanhong; Wang, Yanbing; Hanein, Yael et al. (2004) Novel cell patterning using microheater-controlled thermoresponsive plasma films. J Biomed Mater Res A 70:159-68
Wagner, Victoria E; Koberstein, Jeffrey T; Bryers, James D (2004) Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers. Biomaterials 25:2247-63
Tsai, W B; Shi, Q; Grunkemeier, J M et al. (2004) Platelet adhesion to radiofrequency glow-discharge-deposited fluorocarbon polymers preadsorbed with selectively depleted plasmas show the primary role of fibrinogen. J Biomater Sci Polym Ed 15:817-40

Showing the most recent 10 out of 120 publications