The development of the next generation of medical implants involves attaching appropriate biorecognition molecules in the proper orientation and concentration on the surface of an implant, to prevent the cellular activation that leads to the foreign body response and implant encapsulation. Porphyrin molecules are ideal for the development of a uniform monolayer, with controlled, optimal spacing of biorecognition groups. Self-assembled porphyrin monolayers on gold surfaces with three custom synthesized alkylthiol substituted tetraphenylporphyrin molecules have been developed by our group. Several techniques including x-ray photoelectron spectroscopy (XPS), ultraviolet/visible absorption spectroscopy (UV/Vis), scanning tunneling microscopy (STM), and grazing-angle infrared spectroscopy (GAIR) are being used to characterize the monolayers. XPS and GAIR studies to date reveal that the porphyrins are chemisorbed to the surface through a sulfur-gold bond, and that the po rphyrin m olecules are aligned on the gold surface in a side-by-side orientation. GAIR results using a polarized light source indicate that the porphyrin rings are oriented parallel to the gold surface.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001296-16
Application #
6345047
Study Section
Project Start
2000-09-01
Project End
2001-08-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
16
Fiscal Year
2000
Total Cost
$105,529
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Tyler, Bonnie J; Peterson, Richard E (2013) Dead-time correction for time-of-flight secondary-ion mass spectral images: a critical issue in multivariate image analysis. Surf Interface Anal 45:475-478
Tyler, B J; Bruening, C; Rangaranjan, S et al. (2011) TOF-SIMS imaging of adsorbed proteins on topographically complex surfaces with Bi(3) (+) primary ions. Biointerphases 6:135
Medzihradszky, Katalin F (2008) Characterization of site-specific N-glycosylation. Methods Mol Biol 446:293-316
Medzihradszky, Katalin F (2005) Peptide sequence analysis. Methods Enzymol 402:209-44
Sanders, Joan E; Lamont, Sarah E; Karchin, Ari et al. (2005) Fibro-porous meshes made from polyurethane micro-fibers: effects of surface charge on tissue response. Biomaterials 26:813-8
Medzihradszky, Katalin F (2005) In-solution digestion of proteins for mass spectrometry. Methods Enzymol 405:50-65
Medzihradszky, Katalin F (2005) Characterization of protein N-glycosylation. Methods Enzymol 405:116-38
Cheng, Xuanhong; Wang, Yanbing; Hanein, Yael et al. (2004) Novel cell patterning using microheater-controlled thermoresponsive plasma films. J Biomed Mater Res A 70:159-68
Wagner, Victoria E; Koberstein, Jeffrey T; Bryers, James D (2004) Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers. Biomaterials 25:2247-63
Tsai, W B; Shi, Q; Grunkemeier, J M et al. (2004) Platelet adhesion to radiofrequency glow-discharge-deposited fluorocarbon polymers preadsorbed with selectively depleted plasmas show the primary role of fibrinogen. J Biomater Sci Polym Ed 15:817-40

Showing the most recent 10 out of 120 publications