The specific aim of this project is to increase the signal-to-noise ratio (S/N) for immunofluorescence flow cytometry detection of intracellular cell cycle regulator molecules by eliminating sources of background noise by phase-sensitive detection methods. At present, p53 cannot be detected in large cells, e.g., fibroblasts and epithelial cell, because of the background noise associated with laser scatter, Raman scatter, nonspecific probe binding, and intrinsic cellular background autofluorescence. We will investigate the use of phase-sensitive flow cytometry to reduce or eliminate these types of interference and thus increase the S/N ratio in low-level measurements. Experiments are currently underway to determine the lifetimes of unstained (fixed) fibroblasts and cells labeled with propidium iodide and proliferating nuclear antigen (PCNA-FITC) and to perform phase-resolved emission measurements of DNA content and immunofluorescence.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001315-17
Application #
6119991
Study Section
Project Start
1999-07-01
Project End
2000-06-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
17
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Los Alamos National Lab
Department
Type
DUNS #
City
Los Alamos
State
NM
Country
United States
Zip Code
87545
Frumkin, Jesse P; Patra, Biranchi N; Sevold, Anthony et al. (2016) The interplay between chromosome stability and cell cycle control explored through gene-gene interaction and computational simulation. Nucleic Acids Res 44:8073-85
Johnson, Leah M; Gao, Lu; Shields IV, C Wyatt et al. (2013) Elastomeric microparticles for acoustic mediated bioseparations. J Nanobiotechnology 11:22
Micheva-Viteva, Sofiya N; Shou, Yulin; Nowak-Lovato, Kristy L et al. (2013) c-KIT signaling is targeted by pathogenic Yersinia to suppress the host immune response. BMC Microbiol 13:249
Ai, Ye; Sanders, Claire K; Marrone, Babetta L (2013) Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal Chem 85:9126-34
Sanders, Claire K; Mourant, Judith R (2013) Advantages of full spectrum flow cytometry. J Biomed Opt 18:037004
Cushing, Kevin W; Piyasena, Menake E; Carroll, Nick J et al. (2013) Elastomeric negative acoustic contrast particles for affinity capture assays. Anal Chem 85:2208-15
Houston, Jessica P; Naivar, Mark A; Jenkins, Patrick et al. (2012) Capture of Fluorescence Decay Times by Flow Cytometry. Curr Protoc Cytom 59:1.25.1-1.25.21
Marina, Oana C; Sanders, Claire K; Mourant, Judith R (2012) Effects of acetic acid on light scattering from cells. J Biomed Opt 17:085002-1
Chen, Jun; Carter, Mark B; Edwards, Bruce S et al. (2012) High throughput flow cytometry based yeast two-hybrid array approach for large-scale analysis of protein-protein interactions. Cytometry A 81:90-8
Piyasena, Menake E; Austin Suthanthiraraj, Pearlson P; Applegate Jr, Robert W et al. (2012) Multinode acoustic focusing for parallel flow cytometry. Anal Chem 84:1831-9

Showing the most recent 10 out of 240 publications