We have developed ways of measuring electron transfer dynamics in specially designed capacitors made from membrane bound reaction center protein. This has demanded the design of critical coupling protocols between femtosecond pulses and the creation of fields across the structure. From the spectroscopic standpoint the great challenge is to improve the signal-to noise in fs experiments where the sample cannot be moved or flowed. Furthermore, the coupling of such experiments to pulsed electric fields and concerning demonstrations of the presence of transient fields is nontrivial. The free energy of the initial charge separation in bacterial photosynthetic reaction centers has been modified by placing oriented Langmuir-Blodgett films of the purified protein between external electrodes in a planar capacitor and applying a field of nearly 106 V/cm. The near-infrared transient absorption changes associated with the decay of the excited state of the bacteriochlorophyll d imer and t he initial charge separation was measured with 300 fs time resolution with and without applied field. The surprisingly small field induced rate changes of the oriented systems compared to unoriented systems suggest that modulation of the energy gap between excited bacteriochlorophyll dimer and the charge separated state with bacteriochlorophyll monomer reduced is the principal influence of electric field on rate. The field induced quantum yield failure observed at longer timescales appears to be associated with modulation of the bacteriopheophytin to bacteriochlorophyll dimer charge recombination.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001348-19
Application #
6328058
Study Section
Project Start
2000-08-01
Project End
2001-07-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
19
Fiscal Year
2000
Total Cost
$2,726
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Sheth, Rahul A; Arellano, Ronald S; Uppot, Raul N et al. (2015) Prospective trial with optical molecular imaging for percutaneous interventions in focal hepatic lesions. Radiology 274:917-26
Courter, Joel R; Abdo, Mohannad; Brown, Stephen P et al. (2014) The design and synthesis of alanine-rich ?-helical peptides constrained by an S,S-tetrazine photochemical trigger: a fragment union approach. J Org Chem 79:759-68
Roussakis, Emmanuel; Spencer, Joel A; Lin, Charles P et al. (2014) Two-photon antenna-core oxygen probe with enhanced performance. Anal Chem 86:5937-45
Singh, Prabhat K; Kuroda, Daniel G; Hochstrasser, Robin M (2013) An ion's perspective on the molecular motions of nanoconfined water: a two-dimensional infrared spectroscopy study. J Phys Chem B 117:9775-84
Chuntonov, Lev; Ma, Jianqiang (2013) Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton. J Phys Chem B 117:13631-8
Culik, Robert M; Annavarapu, Srinivas; Nanda, Vikas et al. (2013) Using D-Amino Acids to Delineate the Mechanism of Protein Folding: Application to Trp-cage. Chem Phys 422:
Kuroda, Daniel G; Bauman, Joseph D; Challa, J Reddy et al. (2013) Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat Chem 5:174-81
Lam, A R; Moran, S D; Preketes, N K et al. (2013) Study of the ?D-crystallin protein using two-dimensional infrared (2DIR) spectroscopy: experiment and simulation. J Phys Chem B 117:15436-43
Kuroda, Daniel G; Singh, Prabhat K; Hochstrasser, Robin M (2013) Differential hydration of tricyanomethanide observed by time resolved vibrational spectroscopy. J Phys Chem B 117:4354-64
Goldberg, Jacob M; Speight, Lee C; Fegley, Mark W et al. (2012) Minimalist probes for studying protein dynamics: thioamide quenching of selectively excitable fluorescent amino acids. J Am Chem Soc 134:6088-91

Showing the most recent 10 out of 128 publications