This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Centrin is a calcium binding protein which is localized in centrioles in vertebrate cells. The phosphorylation of centrin has been shown to signal the separation of centrosomes at prophase and has been implicated in centriole separation. Recent work by Sanoguet and coworkers has investigated the effect of centrin phosphorylation upon the protein thermal stability and structural dynamics. Using Fourier transform infrared spectroscopy and two-dimensional correlation spectroscopy, they were able to determine the structural changes due to thermal denaturation for both phosphorylated and holo-centrin. The results indicated that phosphorylation affects the unfolding of the loops of the C-terminal domain. Furthermore, there is evidence of a pre-transition involving the aspartate band of the Amide I. In light of these findings, we propose to use the method of Laser Induced Temperature-Jump in conjunction with infrared spectroscopy to monitor the folding dynamics of the C-terminal domain of phosphorylated centrin and holo-centrin. The C-terminal domain of centrin is structurally independent from other domains, and study of this fragment alone will simplify the experiment and its interpretation. The experiments will aim to monitor the aspartate vibrational mode which shows pre-transition absorption changes at low temperatures as well as the vibrations of the loop structures which show high temperature denaturation. A comparison of the phosphorylated and holo-centrin kinetics for these structural changes may yield a greater understanding of the biological function of centrin.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001348-25
Application #
7373166
Study Section
Special Emphasis Panel (ZRG1-MEDB (02))
Project Start
2006-08-01
Project End
2007-07-31
Budget Start
2006-08-01
Budget End
2007-07-31
Support Year
25
Fiscal Year
2006
Total Cost
$677
Indirect Cost
Name
University of Pennsylvania
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Sheth, Rahul A; Arellano, Ronald S; Uppot, Raul N et al. (2015) Prospective trial with optical molecular imaging for percutaneous interventions in focal hepatic lesions. Radiology 274:917-26
Roussakis, Emmanuel; Spencer, Joel A; Lin, Charles P et al. (2014) Two-photon antenna-core oxygen probe with enhanced performance. Anal Chem 86:5937-45
Courter, Joel R; Abdo, Mohannad; Brown, Stephen P et al. (2014) The design and synthesis of alanine-rich ?-helical peptides constrained by an S,S-tetrazine photochemical trigger: a fragment union approach. J Org Chem 79:759-68
Singh, Prabhat K; Kuroda, Daniel G; Hochstrasser, Robin M (2013) An ion's perspective on the molecular motions of nanoconfined water: a two-dimensional infrared spectroscopy study. J Phys Chem B 117:9775-84
Chuntonov, Lev; Ma, Jianqiang (2013) Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton. J Phys Chem B 117:13631-8
Culik, Robert M; Annavarapu, Srinivas; Nanda, Vikas et al. (2013) Using D-Amino Acids to Delineate the Mechanism of Protein Folding: Application to Trp-cage. Chem Phys 422:
Kuroda, Daniel G; Bauman, Joseph D; Challa, J Reddy et al. (2013) Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat Chem 5:174-81
Lam, A R; Moran, S D; Preketes, N K et al. (2013) Study of the ?D-crystallin protein using two-dimensional infrared (2DIR) spectroscopy: experiment and simulation. J Phys Chem B 117:15436-43
Kuroda, Daniel G; Singh, Prabhat K; Hochstrasser, Robin M (2013) Differential hydration of tricyanomethanide observed by time resolved vibrational spectroscopy. J Phys Chem B 117:4354-64
Goldberg, Jacob M; Speight, Lee C; Fegley, Mark W et al. (2012) Minimalist probes for studying protein dynamics: thioamide quenching of selectively excitable fluorescent amino acids. J Am Chem Soc 134:6088-91

Showing the most recent 10 out of 128 publications