This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Alpha-helix is a common structural motif in proteins. Understanding its folding mechanism is therefore important for understanding how large proteins fold. The helix-coil transition has been studied extensively in the past, including recent theoretical and experimental efforts as well as studies involving laser-induced T-jump methods. Although a detailed mechanism of the helix-coil transition has begun to emerge, controversy still exists. In this work we are going to study the helix-coil transition in a synthetic 19 residue Ala-based helical peptide using laser-induced T-jump for rapid refolding/unfolding initiation and time-resolved infrared spectroscopy for relaxation measurements. Experimental results will be compared to theoretical model predictions.It is well-known that end caps and the peptide length can dramatically influence the thermodynamics of the helix-coil transition. However, their roles in determining the kinetics of the helix-coil transition have not been studied extensively and are less well understood. Kinetic Ising models and sequential kinetic models involving barrier crossing via diffusion all predict that the helix formation time depends monotonically on the peptide length with the relaxation time increasing with respect to increasing chain length. Here, we have studied the helix-coil transition kinetics of a series of Ala-based alpha-helical peptides of different length (19-39 residues), with and without end caps, using time-resolved infrared spectroscopy coupled with laser-induced temperature jump (T-jump) initiation method.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001348-27
Application #
7723844
Study Section
Special Emphasis Panel (ZRG1-BCMB-N (40))
Project Start
2008-06-01
Project End
2009-05-31
Budget Start
2008-06-01
Budget End
2009-05-31
Support Year
27
Fiscal Year
2008
Total Cost
$10,328
Indirect Cost
Name
University of Pennsylvania
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Sheth, Rahul A; Arellano, Ronald S; Uppot, Raul N et al. (2015) Prospective trial with optical molecular imaging for percutaneous interventions in focal hepatic lesions. Radiology 274:917-26
Courter, Joel R; Abdo, Mohannad; Brown, Stephen P et al. (2014) The design and synthesis of alanine-rich ?-helical peptides constrained by an S,S-tetrazine photochemical trigger: a fragment union approach. J Org Chem 79:759-68
Roussakis, Emmanuel; Spencer, Joel A; Lin, Charles P et al. (2014) Two-photon antenna-core oxygen probe with enhanced performance. Anal Chem 86:5937-45
Singh, Prabhat K; Kuroda, Daniel G; Hochstrasser, Robin M (2013) An ion's perspective on the molecular motions of nanoconfined water: a two-dimensional infrared spectroscopy study. J Phys Chem B 117:9775-84
Chuntonov, Lev; Ma, Jianqiang (2013) Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton. J Phys Chem B 117:13631-8
Culik, Robert M; Annavarapu, Srinivas; Nanda, Vikas et al. (2013) Using D-Amino Acids to Delineate the Mechanism of Protein Folding: Application to Trp-cage. Chem Phys 422:
Kuroda, Daniel G; Bauman, Joseph D; Challa, J Reddy et al. (2013) Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat Chem 5:174-81
Lam, A R; Moran, S D; Preketes, N K et al. (2013) Study of the ?D-crystallin protein using two-dimensional infrared (2DIR) spectroscopy: experiment and simulation. J Phys Chem B 117:15436-43
Kuroda, Daniel G; Singh, Prabhat K; Hochstrasser, Robin M (2013) Differential hydration of tricyanomethanide observed by time resolved vibrational spectroscopy. J Phys Chem B 117:4354-64
Goldberg, Jacob M; Speight, Lee C; Fegley, Mark W et al. (2012) Minimalist probes for studying protein dynamics: thioamide quenching of selectively excitable fluorescent amino acids. J Am Chem Soc 134:6088-91

Showing the most recent 10 out of 128 publications