The focus of the research presented in this grant proposal is to develop and apply both theoretical and spectroscopic tools for studying DNA under physiological conditions. The emphasis in the theoretical work is therefore on problems relevant to chromatin structure and to supercoiled DNA. In the theoretical work, we extend earlier work to analyze the large scale (from 105 bases to 3x108 bases) structure of the interphase chromosome. The experimental work has two main thrusts: first, to develop new fluorescence energy transfer techniques with 50-500 fold improvement in signal to noise over conventional techniques, yielding (among other benefits) the ability to measure the relatively long distances (80-130 Angstroms) relevant in protein-DNA complexes; second, to develop sensitive luminescent probes for labeling of cellular and DNA organelles for fluorescence microscopy. These probes are intended to overcome contrast problems due to cellular autofluorescence. Both experimental aspects rely on the unusual luminescent properties of chelates containing the lanthanide elements Terbium and Europium. They have unusually long lifetime s (Terbium lifetime 1.5-2.2 milliseconds; Europium 0.6-2.3 msec), narrow band emissions (a few nanometers), good to excellent quantum yields (0.1-1), no self-quenching, and under the right conditions, huge Stoke shifts (200nm). As explained below, these characteristics make lanthanide chelates nearly ideal luminescent probes for use in fluorescence microscopy on (FET) experiments. In particular, they yield an improvement in signal to background of several orders of magnitude over conventional FET and are expected to make possible measurements over distances roughly twice that previously attainable with conventional FET. Although the spectroscopic techniques developed will not be limited to questions involving DNA, we propose to first use them to study such questions. In particular, we propose to first apply our lanthanide-based FET to structural (and later dynamic) measurements of LDNA-protein complexes, including DNA - Integration Host Factor complex. and DNA-uvrABC two model systems for protein-induced DNA bends. Such bends are now known to be important in prokaryotic and eukaryotic gene regulation. IN addition, IHF is an excellent model system for studying recombination, and uvrABC is an excellent system for studying DNA repair. We will also apply FET to understanding the structural and dynamic properties of plectonemic (supercoiled) DNA. We propose to first use the lanthanide chelates as luminescent probes in fluorescence microscopy to study genetic abnormalities in human prostate cancer cells. With more conventional fluorescent labels, autofluorescence has prevented such imaging.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001614-15
Application #
5223428
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
1996
Total Cost
Indirect Cost
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications