Porphyrins, chlorophylls, and bacteriochlorophylls are complex aromatic macrocycles which are of great biological significance, and also have novel and theoretically interesting mass spectra. In the situation where only small amounts of natural tetrapyrroles are available, mass spectrometry is virtually the only technique which can be used to obtain structural data on our materials. Primary information from mass spectrometry affords information on the various substituents on the macro-ring because the ring does not normally fragment. Mass spectra also help to establish the structures of unknown (synthetic or biological) porphyrins and chlorophylls be they unexpected reaction products or previously unknown natural substances. Our group in UC Davis focusses its efforts on synthetic and biosynthetic studies of porphyrins and chlorin systems which are the prosthetic groups in hemoglobins, myoglobins, cytochromes, catalases, peroxidases, chlorophylls, and bacteriochlorophylls. We are also heavily involved in the characterization and use of naturally derived photosensitizers for use in photodynamic therapy of malignant tumors. Mass spectrometry in these tetrapyrrole systems has beenshown, over the years, to be a vitally important component of the spectroscopic arsenal for structural investigation and chemical reactivity.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001614-19
Application #
6308901
Study Section
Project Start
2000-03-01
Project End
2002-02-28
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
19
Fiscal Year
2000
Total Cost
$9,880
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications