This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Recently, an approach pioneered in Prof. Peter Schultz lab (Scripps) allows for the site-specific incorporation of an unnatural amino acid anywhere within a protein sequence. This technology has already proven useful for labeling proteins with fluorescent, 13C and 15N, and chemical crosslinking unnatural amino acids for in vivo and in vitro structure-function studies. By using an orthogonal M. jannaschii tRNA/tRNA-synthetase pair, that is one where neither the tRNA nor the synthetase cross-reacts with the endogenous E.coli tRNA's or amino acyl tRNA sythetases, it is possible to introduce an unnatural amino acid residue at any position in the protein using a codon that is only recognized by the orthogonal tRNA. Through collaboration with the Schultz lab at Scripps, the Paul Ortiz de Montellano lab has been able to acquire this labeling technology in house and has recently used it to successfully label several heme containing proteins in preparation for further biophysical studies. Unfortunately, lack of information as to the extent of incorporation of the unnatural amino acid and relative expression levels has limited the application of this technology. To that end, we hope to utilize the UCSF Department of Pharmaceutical Chemistry Mass Spectrometry Facility to access the extent and location of incorporation of the unnatural amino acids into various proteins, and also determine their relative expression levels. This knowledge will not only further our work, but will also allow for more widespread adoption of this powerful technology.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001614-27
Application #
7957406
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
27
Fiscal Year
2009
Total Cost
$169
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10
Bongrand, Clotilde; Koch, Eric J; Moriano-Gutierrez, Silvia et al. (2016) A genomic comparison of 13 symbiotic Vibrio fischeri isolates from the perspective of their host source and colonization behavior. ISME J 10:2907-2917
Kintzer, Alexander F; Stroud, Robert M (2016) Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531:258-62

Showing the most recent 10 out of 630 publications