This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Giardia is an important model for cell biology because it represents the most basal of eukaryotic lineages based on sequence analysis of conserved genes. Giardia trophozoites lack many typical eukaryotic organelles such as mitochondria, peroxisomes, and protein trafficking compartments such as a classical Golgi apparatus and secretory granules. Instead, Giardia employs a simple endomembrane system to export proteins to distinct intracellular locations. We have discovered a novel protein compartment in Giardia that appears to serve as ER and endosome. Using reporter-constructs, confocal microscopy, and ultrastructural analysis, we have shown that Giardia cysteine proteases localize to a tubulovesicular network with an ER-like structure peripheral to the perinuclear membrane. Labeled proteins are rapidly endocytosed into this compartment and degraded by these Giardia cysteine proteases. It therefore appears that Giardia contains a transitional endomembranous structure that may pre-date compartmentalization of endocytic/lysosomal functions and the endoplasmic reticulum. Giardia cysteine proteases may function to break down endocytosed nutrients. However, it remains unclear which members of the Giardia cysteine protease family are responsible for this activity. Cysteine protease activity can be isolated and purified from Giardia lysate using FPLC. This lysate fraction can then be submitted for mass spectrometry analysis to determine the gene products responsible for this novel activity.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001614-28
Application #
8169751
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
2010-09-12
Project End
2011-05-31
Budget Start
2010-09-12
Budget End
2011-05-31
Support Year
28
Fiscal Year
2010
Total Cost
$1,766
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications