This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Desensitization and internalization of the mu opioid G protein-coupled receptor are ligand dependent processes mediated by phosphorylation by G protein-coupled receptor kinases (GRKs) on multiple serine and threonine residues in the cytoplasmic tail. While endogenous peptides and methadone induce phosphorylation followed by receptor internalization into the cytoplasm, certain highly addictive drugs such as heroin and morphine differ significantly in their effects on phosphorylation, desensitization, and internalization. Some of these differences can be understood in terms of classical models of agonist efficacy. However, several lines of evidence suggest that there may be additional specificity in the regulatory effects of opiate drugs that are currently unexplained. The working hypothesis of the proposed studies is that opiate drugs, in addition to differing in relative efficacy for promoting G protein activation, produce different patterns of multiple phosphorylations in the mu opioid receptor, thereby 'encoding'some of the differences in cellular regulation observed in previous studies. The proposed studies will test this hypothesis using previously defined in vitro and cell-based systems to generate phosphorylated receptors under controlled conditions, followed by advanced protein mass spectrometry to precisely define patterns of receptor phosphorylation produced. The functional significance of putative agonist-specific differences in receptor phosphorylation will then be tested using transfected cells in which agonist-specific effects on opioid receptor regulation are known to occur. The proposed studies could provide significant new insight into mechanisms of opiate drug action and, more generally, may help extend our present understanding of partial agonism of GPCRs.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001614-29
Application #
8363744
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
29
Fiscal Year
2011
Total Cost
$33
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications