This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The mitotic spindle assembly checkpoint (SAC) is the only known checkpoint in mitosis. The SAC is composed of complex multi-signal transduction pathways that promote the proper segregation of chromosomes during cell division. As such, defects in the SAC result in chromosome instability (CIN), a hallmark of cancer. Of clinical importance, apoptosis caused by mitotic catastrophe depends on the activation of SAC. However, our knowledge of SAC signaling is far from complete, and the functional cross-talk between SAC activation and the induction of mitotic apoptosis is poorly understood. This makes it difficult to explain the mechanism by which cancer cells respond or become refractory to anti-mitotic drugs, e.g. taxol, that induced spindle-damage or mitotic catastrophe. Therefore, it is highly important to understand both the molecular mechanism by which SAC (i) controls proper chromosome segregation to maintain chromosome stability during cell division and (ii) elicits an apoptotic response in mitosis to anti-mitotic cancer therapeutic drugs.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001614-29
Application #
8363799
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
29
Fiscal Year
2011
Total Cost
$17
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10
Bongrand, Clotilde; Koch, Eric J; Moriano-Gutierrez, Silvia et al. (2016) A genomic comparison of 13 symbiotic Vibrio fischeri isolates from the perspective of their host source and colonization behavior. ISME J 10:2907-2917
Kintzer, Alexander F; Stroud, Robert M (2016) Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531:258-62

Showing the most recent 10 out of 630 publications