The globins and peroxidases, while performing completely different chemistry, share features of the iron heme active site: a protoporphyrin IX prosthetic group is linked to the protein by the proximal histidine residue. X-Ray absorption spectroscopy (XAS) provides a method to determine the local structure of iron heme active sites in proteins. Our previous studies using X-Ray absorption spectroscopy have revealed a significant difference in the Fe-N (e) bond length between the peroxidases and the globins (for a review, see Powers, L. in Molecular Electronics and Molecular Electronic Devices 3, 211: 1994, CRC Press Inc., Boca Raton, Florida). Globins typically have a Fe-N (e) distance close to 2.1? while the Fe-N (e) distance in the peroxidases is closer to 1.9?. We have proposed (Sinclair, R., Powers, L., Bumpus, J., Albo, A., Brock, B. Biochem. 31: 4892, 1994 that strong hydrogen bonding to the proximal histidine is responsible for the shorter bond length in the peroxidases. Here we use site-specific mutagenesis to eliminate the strong proximal hydrogen bonding in cytochrome c peroxidase and to introduce strong proximal hydrogen bonding in myoglobin. Consistent with our hypothesis, elimination of the Asp-235-His hydrogen bond in CcP results in elongation of Fe-N (e) from ~1.9? to ~ 2.1?. Conversely, introduction of a strong proximal hydrogen bond in myoglobin shortens Fe-N (e) from ~2.1? to ~1.9?. These results correlate well with other biochemical data.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001633-14
Application #
5223483
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
14
Fiscal Year
1996
Total Cost
Indirect Cost
Vongsvivut, Jitraporn; Fernandez, Jason; Ekgasit, Sanong et al. (2004) Characterization of supported cylinder-planar germanium waveguide sensors with synchrotron infrared radiation. Appl Spectrosc 58:143-51
Masip, Lluis; Pan, Jonathan L; Haldar, Suranjana et al. (2004) An engineered pathway for the formation of protein disulfide bonds. Science 303:1185-9
Huang, Raymond Y; Miller, Lisa M; Carlson, Cathy S et al. (2003) In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone 33:514-21
Rashidzadeh, Hassan; Khrapunov, Sergei; Chance, Mark R et al. (2003) Solution structure and interdomain interactions of the Saccharomyces cerevisiae ""TATA binding protein"" (TBP) probed by radiolytic protein footprinting. Biochemistry 42:3655-65
Uchida, Takeshi; Takamoto, Keiji; He, Qin et al. (2003) Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme. J Mol Biol 328:463-78
Taylor, Colleen M; Watton, Stephen P; Bryngelson, Peter A et al. (2003) Inner-sphere complexation of cobalt(II) 2,9-dimethyl-1,10-phenanthroline ([Co(neo)]2+) with commercial and sol-gel derived silica gel surfaces. Inorg Chem 42:312-20
Dhavan, Gauri M; Crothers, Donald M; Chance, Mark R et al. (2002) Concerted binding and bending of DNA by Escherichia coli integration host factor. J Mol Biol 315:1027-37
Uchida, Takeshi; He, Qin; Ralston, Corie Y et al. (2002) Linkage of monovalent and divalent ion binding in the folding of the P4-P6 domain of the Tetrahymena ribozyme. Biochemistry 41:5799-806
Tang, Qun; Carrington, Paul E; Horng, Yih-Chern et al. (2002) X-ray absorption and resonance Raman studies of methyl-coenzyme M reductase indicating that ligand exchange and macrocycle reduction accompany reductive activation. J Am Chem Soc 124:13242-56
Guan, Jing-Qu; Vorobiev, Sergeui; Almo, Steven C et al. (2002) Mapping the G-actin binding surface of cofilin using synchrotron protein footprinting. Biochemistry 41:5765-75

Showing the most recent 10 out of 68 publications