Group II introns are found in the organellar genes of plants, fungi, and yeast and in the genomes of many bacteria. Group II introns have great promise as potential therapeutic agents and as model systems for the understanding folding, catalysis and molecular evolution. The pathway by which a group II intron folds into its active structure and catalyzes the variety of multi-step reactions involved in self-splicing is an intriguing unanswered question. The group II ribozymes also provide a valuable test of the generality of the folding characteristics that have been observed predominantly in Group I ribozymes. Preliminary studies are underway to determine the conditions under which synchrotron x-ray footprinting studies of the folding of a Group II ribozyme can be studied.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001633-17
Application #
6205724
Study Section
Project Start
1999-09-01
Project End
2000-08-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
17
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Vongsvivut, Jitraporn; Fernandez, Jason; Ekgasit, Sanong et al. (2004) Characterization of supported cylinder-planar germanium waveguide sensors with synchrotron infrared radiation. Appl Spectrosc 58:143-51
Masip, Lluis; Pan, Jonathan L; Haldar, Suranjana et al. (2004) An engineered pathway for the formation of protein disulfide bonds. Science 303:1185-9
Huang, Raymond Y; Miller, Lisa M; Carlson, Cathy S et al. (2003) In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone 33:514-21
Rashidzadeh, Hassan; Khrapunov, Sergei; Chance, Mark R et al. (2003) Solution structure and interdomain interactions of the Saccharomyces cerevisiae ""TATA binding protein"" (TBP) probed by radiolytic protein footprinting. Biochemistry 42:3655-65
Uchida, Takeshi; Takamoto, Keiji; He, Qin et al. (2003) Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme. J Mol Biol 328:463-78
Taylor, Colleen M; Watton, Stephen P; Bryngelson, Peter A et al. (2003) Inner-sphere complexation of cobalt(II) 2,9-dimethyl-1,10-phenanthroline ([Co(neo)]2+) with commercial and sol-gel derived silica gel surfaces. Inorg Chem 42:312-20
Tang, Qun; Carrington, Paul E; Horng, Yih-Chern et al. (2002) X-ray absorption and resonance Raman studies of methyl-coenzyme M reductase indicating that ligand exchange and macrocycle reduction accompany reductive activation. J Am Chem Soc 124:13242-56
Guan, Jing-Qu; Vorobiev, Sergeui; Almo, Steven C et al. (2002) Mapping the G-actin binding surface of cofilin using synchrotron protein footprinting. Biochemistry 41:5765-75
Chance, Mark R; Bresnick, Anne R; Burley, Stephen K et al. (2002) Structural genomics: a pipeline for providing structures for the biologist. Protein Sci 11:723-38
Maleknia, Simin D; Kiselar, Janna G; Downard, Kevin M (2002) Hydroxyl radical probe of the surface of lysozyme by synchrotron radiolysis and mass spectrometry. Rapid Commun Mass Spectrom 16:53-61

Showing the most recent 10 out of 68 publications