Our global mapping procedure, where crystal structure coordinates are refined to XAS data using the ab initio XAS code FEFF 6.01, continues to be used and updated. In the programs, a grid of hundreds of simulations are directly compared to the experimental data without the use of non-linear least squares fitting procedures to find the interatomic distances. Instead, each simulation is performed with different interatomic distances. The emphasis is on mapping the local Hand global minima and providing a detailed visual picture and error Hanalysis in the comparison of alternative structures. The three Hdimensional structural coordinates utilized in the simulations are Hbased on crystal structure models derived from structural databases. HThus, a particular geometry for the metal site is incorporated in this Hchoice. Alternative structures with different geometries can also be Hselected, processed, and compared. This makes the structural Hassumptions about the site explicit and they must be justified based Hon ancillary structural information. Our suite of programs (called HAUTOFIT 1.2) vary selected bond distances, compare the resulting ab Hinitio simulations to the experimental data, and compute and plot a Hfigure that displays 400-500 alternative solutions simultaneously. HThese programs are available to outside users free of charge and have Hbeen readied for release along with a manual for using the code. In Haddition, we have recently completed a UNIX based version of the code, Halong with the original PC based version.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001633-18
Application #
6345118
Study Section
Project Start
2000-09-01
Project End
2001-08-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
18
Fiscal Year
2000
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Vongsvivut, Jitraporn; Fernandez, Jason; Ekgasit, Sanong et al. (2004) Characterization of supported cylinder-planar germanium waveguide sensors with synchrotron infrared radiation. Appl Spectrosc 58:143-51
Masip, Lluis; Pan, Jonathan L; Haldar, Suranjana et al. (2004) An engineered pathway for the formation of protein disulfide bonds. Science 303:1185-9
Taylor, Colleen M; Watton, Stephen P; Bryngelson, Peter A et al. (2003) Inner-sphere complexation of cobalt(II) 2,9-dimethyl-1,10-phenanthroline ([Co(neo)]2+) with commercial and sol-gel derived silica gel surfaces. Inorg Chem 42:312-20
Huang, Raymond Y; Miller, Lisa M; Carlson, Cathy S et al. (2003) In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone 33:514-21
Rashidzadeh, Hassan; Khrapunov, Sergei; Chance, Mark R et al. (2003) Solution structure and interdomain interactions of the Saccharomyces cerevisiae ""TATA binding protein"" (TBP) probed by radiolytic protein footprinting. Biochemistry 42:3655-65
Uchida, Takeshi; Takamoto, Keiji; He, Qin et al. (2003) Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme. J Mol Biol 328:463-78
Dewan, John C; Feeling-Taylor, Angela; Puius, Yoram A et al. (2002) Structure of mutant human carbonmonoxyhemoglobin C (betaE6K) at 2.0 A resolution. Acta Crystallogr D Biol Crystallogr 58:2038-42
Kiselar, J G; Maleknia, S D; Sullivan, M et al. (2002) Hydroxyl radical probe of protein surfaces using synchrotron X-ray radiolysis and mass spectrometry. Int J Radiat Biol 78:101-14
Swisher, Jennifer F; Su, Linhui J; Brenowitz, Michael et al. (2002) Productive folding to the native state by a group II intron ribozyme. J Mol Biol 315:297-310
Dhavan, Gauri M; Crothers, Donald M; Chance, Mark R et al. (2002) Concerted binding and bending of DNA by Escherichia coli integration host factor. J Mol Biol 315:1027-37

Showing the most recent 10 out of 68 publications