This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Our laboratory focuses on the development of ruthenium complexes as kinetically inert enzyme inhibitors. In this concept, the metal center controls the orientation of the organic ligands to achieve unique three-dimensional structures that match the enzyme active site. X-ray crystallography of target enzymes with bound organoruthenium compounds are a central part of this effort. We are now especially interested in improving the affinity and selectivity of our lead structures for GSK-3. The functilnal groups in the active side that that are responsible for the potency and selectivity of the metal complexes will be investigated by introducing mutations in the active site of GSK-3. This work will include the following aim: Obtaining co-crystal structures of native and mutant GSK-3beta with the organoruthenium inhibitors: These structures will allow us to understand the binding mode in detail and to design second generation inhibitors for GSK-3. We already obtained cocrystals with one of the first generation compounds. These crystals did not diffract at the in-house X-Ray source (R axis IV++ image plate detector mounted on a Rigaku-200HB rotating anode X-ray generator, Christianson Lab). However, we were able to collect a complete data set at CHESS F1beamline (in collaboration with Dr. David Christiansons Lab). These crystals diffracted up to 3.1 ? and the unit cell parameters were determined. The purpose of this proposal is to request beam time to collect high-resolution data sets that will be obtained from crystals with better quality.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001646-27
Application #
7955541
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
27
Fiscal Year
2009
Total Cost
$24,840
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Kozlov, Guennadi; Wong, Kathy; Gehring, Kalle (2018) Crystal structure of the Legionella effector Lem22. Proteins 86:263-267
Ménade, Marie; Kozlov, Guennadi; Trempe, Jean-François et al. (2018) Structures of ubiquitin-like (Ubl) and Hsp90-like domains of sacsin provide insight into pathological mutations. J Biol Chem 293:12832-12842
Xu, Jie; Kozlov, Guennadi; McPherson, Peter S et al. (2018) A PH-like domain of the Rab12 guanine nucleotide exchange factor DENND3 binds actin and is required for autophagy. J Biol Chem 293:4566-4574
Dean, Dexter N; Rana, Pratip; Campbell, Ryan P et al. (2018) Propagation of an A? Dodecamer Strain Involves a Three-Step Mechanism and a Key Intermediate. Biophys J 114:539-549
Chen, Yu Seby; Kozlov, Guennadi; Fakih, Rayan et al. (2018) The cyclic nucleotide-binding homology domain of the integral membrane protein CNNM mediates dimerization and is required for Mg2+ efflux activity. J Biol Chem 293:19998-20007
Xu, Caishuang; Kozlov, Guennadi; Wong, Kathy et al. (2016) Crystal Structure of the Salmonella Typhimurium Effector GtgE. PLoS One 11:e0166643
Cogliati, Massimo; Zani, Alberto; Rickerts, Volker et al. (2016) Multilocus sequence typing analysis reveals that Cryptococcus neoformans var. neoformans is a recombinant population. Fungal Genet Biol 87:22-9
Oot, Rebecca A; Kane, Patricia M; Berry, Edward A et al. (2016) Crystal structure of yeast V1-ATPase in the autoinhibited state. EMBO J 35:1694-706
Lucido, Michael J; Orlando, Benjamin J; Vecchio, Alex J et al. (2016) Crystal Structure of Aspirin-Acetylated Human Cyclooxygenase-2: Insight into the Formation of Products with Reversed Stereochemistry. Biochemistry 55:1226-38
Bauman, Joseph D; Harrison, Jerry Joe E K; Arnold, Eddy (2016) Rapid experimental SAD phasing and hot-spot identification with halogenated fragments. IUCrJ 3:51-60

Showing the most recent 10 out of 375 publications