This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. X-ray cryocrystallography is the primary tool used to determine the 3D molecular structure of proteins and other biological macromolecules, and to date roughly 50,000 unique structures having been determined. We are investigating several factors that affect the quality of the structural information that is obtained, and attempting to develop improved protocols. Specific questions being investigated include: Why does cooling protein crystals disorder them? How do X-rays damage the crystal, and how do low temperatures reduce this damage? How do the method by which a protein crystal is cooled and the cooling rate affect its structure? How does protein structure evolve with temperature, especially in the vicinity of the glass transition? Can variable temperature data collection shed new light on protein dynamics? Our planned work is based on two significant discoveries that have allowed us to successfully cool crystals at rates from 0.1 K/s to 100,000 K/s, and to successfully collect structural quality data sets at arbitrary temperatures between 300 K and 100 K, in both cases without the use of penetrating cryoprotectants.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001646-29
Application #
8363567
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
29
Fiscal Year
2011
Total Cost
$33,724
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Kozlov, Guennadi; Wong, Kathy; Gehring, Kalle (2018) Crystal structure of the Legionella effector Lem22. Proteins 86:263-267
Ménade, Marie; Kozlov, Guennadi; Trempe, Jean-François et al. (2018) Structures of ubiquitin-like (Ubl) and Hsp90-like domains of sacsin provide insight into pathological mutations. J Biol Chem 293:12832-12842
Xu, Jie; Kozlov, Guennadi; McPherson, Peter S et al. (2018) A PH-like domain of the Rab12 guanine nucleotide exchange factor DENND3 binds actin and is required for autophagy. J Biol Chem 293:4566-4574
Dean, Dexter N; Rana, Pratip; Campbell, Ryan P et al. (2018) Propagation of an A? Dodecamer Strain Involves a Three-Step Mechanism and a Key Intermediate. Biophys J 114:539-549
Chen, Yu Seby; Kozlov, Guennadi; Fakih, Rayan et al. (2018) The cyclic nucleotide-binding homology domain of the integral membrane protein CNNM mediates dimerization and is required for Mg2+ efflux activity. J Biol Chem 293:19998-20007
Xu, Caishuang; Kozlov, Guennadi; Wong, Kathy et al. (2016) Crystal Structure of the Salmonella Typhimurium Effector GtgE. PLoS One 11:e0166643
Cogliati, Massimo; Zani, Alberto; Rickerts, Volker et al. (2016) Multilocus sequence typing analysis reveals that Cryptococcus neoformans var. neoformans is a recombinant population. Fungal Genet Biol 87:22-9
Oot, Rebecca A; Kane, Patricia M; Berry, Edward A et al. (2016) Crystal structure of yeast V1-ATPase in the autoinhibited state. EMBO J 35:1694-706
Lucido, Michael J; Orlando, Benjamin J; Vecchio, Alex J et al. (2016) Crystal Structure of Aspirin-Acetylated Human Cyclooxygenase-2: Insight into the Formation of Products with Reversed Stereochemistry. Biochemistry 55:1226-38
Bauman, Joseph D; Harrison, Jerry Joe E K; Arnold, Eddy (2016) Rapid experimental SAD phasing and hot-spot identification with halogenated fragments. IUCrJ 3:51-60

Showing the most recent 10 out of 375 publications