This report describes experiments designed to assess and illustrate the effectiveness of a new method for the measurement of cerebral interstitial pO2 in conscious rodents. It is based on the use of low frequency electron paramagnetic resonance (EPR) spectroscopy with lithium phthalocyanine as the oxygen sensitiveprobe. Magnetic resonance imaging was used to document placement of the probe in the brain, and to assess potential cerebral changes associated with the placement. The technique provided accurate and reproducible measurements of localized pO2 in the brains of conscious rodents under a variety of physiological conditions and for time periods of at least 2 weeks. Using this approach we quantitated the depressing effects on cerebral pO2 of three representative anesthetics, isoflurane, ketamine/xylazine, and sodium pentobarbital. The effects of changing the content of oxygen in the breathing gas was investigated and found to change the cerebral pO2. In experiments with gerbils, crystals of lithiumphthalocyanine were implanted in each side of the brain and using a one-dimensi onal magnetic field gradient, simultaneous measurement of pO2 values from normal and ischemic (ischemia induced by unilateral ligation of a carotid artery) hemispheres of the brain were obtained. These results demonstrate that EPR oximetry with lithium phthalocyanine is a versatile and useful method in the measurement of cerebral pO2 under various physiological and pathophysiological conditions.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001811-11
Application #
5223673
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
1996
Total Cost
Indirect Cost
Hurth, Kyle M; Nilges, Mark J; Carlson, Kathryn E et al. (2004) Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling. Biochemistry 43:1891-907
Woodmansee, Anh N; Imlay, James A (2002) Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem 277:34055-66
Denisov, Ilia G; Makris, Thomas M; Sligar, Stephen G (2002) Formation and decay of hydroperoxo-ferric heme complex in horseradish peroxidase studied by cryoradiolysis. J Biol Chem 277:42706-10
Atsarkin, V A; Demidov, V V; Vasneva, G A et al. (2001) Mechanism of oxygen response in carbon-based sensors. J Magn Reson 149:85-9
Mangels, M L; Harper, A C; Smirnov, A I et al. (2001) Investigating magnetically aligned phospholipid bilayers with EPR spectroscopy at 94 GHz. J Magn Reson 151:253-9
Breitzer, J G; Smirnov, A I; Szczepura, L F et al. (2001) Redox properties of C6S8(n-) and C3S5(n-) (n = 0, 1, 2): stable radicals and unusual structural properties for C-S-S-C bonds. Inorg Chem 40:1421-9
Denisov, I G; Hung, S C; Weiss, K E et al. (2001) Characterization of the oxygenated intermediate of the thermophilic cytochrome P450 CYP119. J Inorg Biochem 87:215-26
Kirkor, E S; Scheeline, A (2000) Nicotinamide adenine dinucleotide species in the horseradish peroxidase-oxidase oscillator. Eur J Biochem 267:5014-22
Rapoport, N; Smirnov, A I; Pitt, W G et al. (1999) Bioreduction of Tempone and spin-labeled gentamicin by gram-negative bacteria: kinetics and effect of ultrasound. Arch Biochem Biophys 362:233-41
Maringanti, S; Imlay, J A (1999) An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J Bacteriol 181:3792-802

Showing the most recent 10 out of 16 publications