A new EPR-based method was developed to obtain selective information on pO2 in a specific intracellular compartment (phagosomes). This method did not require the use of a broadening agent, thereby eliminating one of the potential sources of experimental error with EPR oximetry. An oxygen sensitive probe (4-(trimethylammonium)2,2,6,6-tetramethylpiperidine-d17-1-oxyl iodide (d-cat1)) which has a net positive charge was incorporated selectively into the phagosomes of macrophages stimulated with zymosan. Extracellular oxygen was measured by addition of a neutral nitroxide (4-oxo-2,2,6,6-tetramethyl piperidine-d16-1-oxyl)(15NPDT)) to this same sample. Measurements based on EPR linewidths showed the average intraphagosomal oxygen concentration to be 11.2 q 3.4 fM lower than that measured from the extra-cellular compartment when the sample was perfused with air, and this was increased on stimulation of mitochondrial consumption or by increasing the oxygen concentrations in the extracellular compartment. These experiments provide what we believe to be the first reported measurements of the oxygen concentration in a specific intracellular location (intraphagosomal) and its comparison with the oxygen concentration in the extracellular space. Weare currently involved in experiments to change the composition of the macropha ge membrane so as to influence the observed difference in oxygen concentration.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001811-11
Application #
5223702
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
1996
Total Cost
Indirect Cost
Hurth, Kyle M; Nilges, Mark J; Carlson, Kathryn E et al. (2004) Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling. Biochemistry 43:1891-907
Woodmansee, Anh N; Imlay, James A (2002) Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem 277:34055-66
Denisov, Ilia G; Makris, Thomas M; Sligar, Stephen G (2002) Formation and decay of hydroperoxo-ferric heme complex in horseradish peroxidase studied by cryoradiolysis. J Biol Chem 277:42706-10
Mangels, M L; Harper, A C; Smirnov, A I et al. (2001) Investigating magnetically aligned phospholipid bilayers with EPR spectroscopy at 94 GHz. J Magn Reson 151:253-9
Breitzer, J G; Smirnov, A I; Szczepura, L F et al. (2001) Redox properties of C6S8(n-) and C3S5(n-) (n = 0, 1, 2): stable radicals and unusual structural properties for C-S-S-C bonds. Inorg Chem 40:1421-9
Denisov, I G; Hung, S C; Weiss, K E et al. (2001) Characterization of the oxygenated intermediate of the thermophilic cytochrome P450 CYP119. J Inorg Biochem 87:215-26
Atsarkin, V A; Demidov, V V; Vasneva, G A et al. (2001) Mechanism of oxygen response in carbon-based sensors. J Magn Reson 149:85-9
Kirkor, E S; Scheeline, A (2000) Nicotinamide adenine dinucleotide species in the horseradish peroxidase-oxidase oscillator. Eur J Biochem 267:5014-22
Rapoport, N; Smirnov, A I; Pitt, W G et al. (1999) Bioreduction of Tempone and spin-labeled gentamicin by gram-negative bacteria: kinetics and effect of ultrasound. Arch Biochem Biophys 362:233-41
Maringanti, S; Imlay, J A (1999) An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J Bacteriol 181:3792-802

Showing the most recent 10 out of 16 publications