Multi-purpose variable temperature setup (2.5-300K) for wide-scan (up 7 T) W-band EPR spectroscopy has been engineered, tested, and is in operation. It is frequently improved and upgraded. Setup utilizes a vertically movable remotely controlled platform with a 95 GHz microwave bridge, a modified continuous flow Oxford cryostat CF 1200 outfitted with custom-implemented microwave, electrical and mechanical feedthroughs, modified I TC-4 Oxford temperature controller, and a multi-purpose W-band probehead with a remote tuning and a goniometer for one-axis sample rotation. The setup is suitable for High Frequency EPR spectroscopy of metalloproteins at cryogenic temperatures, including studies of single crystals of metalloproteins with submillimeter sizes. The setup is available for outside users. During the 1996 year we have designed and manufactured a new resonator for low-temperature measurements which does not show any detectable impurities signal compared with previous design. This year, progress includes 1) development of the next version of the probehead with built-in goniometer allowing 0.1 degree accuracy in sample positioning. 2) Implementing dielectric waveguide section to cut microwave and thermal losses during cryogenic EPR experiments. 3) Development of the probehead for sub-helium work.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001811-13
Application #
6120597
Study Section
Project Start
1998-04-15
Project End
1999-11-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
13
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
DUNS #
121911077
City
Chicago
State
IL
Country
United States
Zip Code
60612
Hurth, Kyle M; Nilges, Mark J; Carlson, Kathryn E et al. (2004) Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling. Biochemistry 43:1891-907
Woodmansee, Anh N; Imlay, James A (2002) Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem 277:34055-66
Denisov, Ilia G; Makris, Thomas M; Sligar, Stephen G (2002) Formation and decay of hydroperoxo-ferric heme complex in horseradish peroxidase studied by cryoradiolysis. J Biol Chem 277:42706-10
Atsarkin, V A; Demidov, V V; Vasneva, G A et al. (2001) Mechanism of oxygen response in carbon-based sensors. J Magn Reson 149:85-9
Mangels, M L; Harper, A C; Smirnov, A I et al. (2001) Investigating magnetically aligned phospholipid bilayers with EPR spectroscopy at 94 GHz. J Magn Reson 151:253-9
Breitzer, J G; Smirnov, A I; Szczepura, L F et al. (2001) Redox properties of C6S8(n-) and C3S5(n-) (n = 0, 1, 2): stable radicals and unusual structural properties for C-S-S-C bonds. Inorg Chem 40:1421-9
Denisov, I G; Hung, S C; Weiss, K E et al. (2001) Characterization of the oxygenated intermediate of the thermophilic cytochrome P450 CYP119. J Inorg Biochem 87:215-26
Kirkor, E S; Scheeline, A (2000) Nicotinamide adenine dinucleotide species in the horseradish peroxidase-oxidase oscillator. Eur J Biochem 267:5014-22
Rapoport, N; Smirnov, A I; Pitt, W G et al. (1999) Bioreduction of Tempone and spin-labeled gentamicin by gram-negative bacteria: kinetics and effect of ultrasound. Arch Biochem Biophys 362:233-41
Maringanti, S; Imlay, J A (1999) An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J Bacteriol 181:3792-802

Showing the most recent 10 out of 16 publications