There is an urgent need for quantitative experimental methodology to analyze diesel soot-coal particulate mixtures. Mixtures of coal dust with diesel soot from machinery are often formed during mining, creating an extremely hazardous environment. Since both coal and diesel soot contain free radicals, EPR can be used in analysis of such mixtures. We have explored the EPR methodology using as examples a diesel soot (sample I), an IBC-101 (Illinois #6) coal (sample II), and their mixtures. At X-band (9.5 GHz) both samples have single-line EPR spectra with only slightly different g-values: (gI-gII)v10-3. Therefore, the EPR signal from a coal-soot mixture cannot reveal the difference between two radical types present. In contrast, at W-band frequencies (94.5 GHz) the g-value resolution is increased by a factor of 10, and this allows us to separate the EPR signals from different mixture components. The results provide a basis for development of a sensitive, quick, and reliable method for an alysis of coal/soot mixtures based on high frequency EPR spectroscopy. This has potential applications to occupational and environmental health and safety.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001811-13
Application #
6120653
Study Section
Project Start
1998-04-15
Project End
1999-11-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
13
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
DUNS #
121911077
City
Chicago
State
IL
Country
United States
Zip Code
60612
Hurth, Kyle M; Nilges, Mark J; Carlson, Kathryn E et al. (2004) Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling. Biochemistry 43:1891-907
Woodmansee, Anh N; Imlay, James A (2002) Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem 277:34055-66
Denisov, Ilia G; Makris, Thomas M; Sligar, Stephen G (2002) Formation and decay of hydroperoxo-ferric heme complex in horseradish peroxidase studied by cryoradiolysis. J Biol Chem 277:42706-10
Atsarkin, V A; Demidov, V V; Vasneva, G A et al. (2001) Mechanism of oxygen response in carbon-based sensors. J Magn Reson 149:85-9
Mangels, M L; Harper, A C; Smirnov, A I et al. (2001) Investigating magnetically aligned phospholipid bilayers with EPR spectroscopy at 94 GHz. J Magn Reson 151:253-9
Breitzer, J G; Smirnov, A I; Szczepura, L F et al. (2001) Redox properties of C6S8(n-) and C3S5(n-) (n = 0, 1, 2): stable radicals and unusual structural properties for C-S-S-C bonds. Inorg Chem 40:1421-9
Denisov, I G; Hung, S C; Weiss, K E et al. (2001) Characterization of the oxygenated intermediate of the thermophilic cytochrome P450 CYP119. J Inorg Biochem 87:215-26
Kirkor, E S; Scheeline, A (2000) Nicotinamide adenine dinucleotide species in the horseradish peroxidase-oxidase oscillator. Eur J Biochem 267:5014-22
Rapoport, N; Smirnov, A I; Pitt, W G et al. (1999) Bioreduction of Tempone and spin-labeled gentamicin by gram-negative bacteria: kinetics and effect of ultrasound. Arch Biochem Biophys 362:233-41
Maringanti, S; Imlay, J A (1999) An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J Bacteriol 181:3792-802

Showing the most recent 10 out of 16 publications