This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The nucleus is delimited by the double-membraned nuclear envelope (NE), which provides structure to the nucleus, forms a barrier separating the nucleoplasm from the surrounding cytoplasm, and serves as an anchor for many essential nuclear processes. The sole mediators of exchange across the NE are termed nuclear pore complexes (NPCs), which span pores in the NE to connect the nuclear and cytoplasmic compartments. Proteins attached to the nuclear end of the NPC and the nucleoplasmic face of the NE could potentially function in any of the structural, trafficking and anchoring roles of the NE. The only protein with such a position and common among eukaryotes is Tpr, whose Saccharomyces (yeast) homologues are termed Mlp1p and Mlp2p. Studies have suggested pivotal roles for the Tpr family in the control of nucleocytoplasmic trafficking, in chromatin silencing, and in spindle morphogenesis, but almost nothing is known about the actual functions of these proteins.
Specific Aim of Collaboration with NCMI: (i) to image the entire intact purified yeast nucleus at an unprecedentedly high resolution, to gain a better structural understanding of the NPC, the nuclear envelope, and the organization of the nuclear periphery (including particularly the role of the Mlps and NPCs in this organization), and (ii) to determine the structure of the Mlp proteins and the higher order complexes they form.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002250-21
Application #
7357827
Study Section
Special Emphasis Panel (ZRG1-BPC-K (40))
Project Start
2005-12-01
Project End
2006-11-30
Budget Start
2005-12-01
Budget End
2006-11-30
Support Year
21
Fiscal Year
2006
Total Cost
$7,529
Indirect Cost
Name
Baylor College of Medicine
Department
Physiology
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Bucero, Marta Abril; Bajaj, Chandrajit; Mourrain, Bernard (2016) On the construction of general cubature formula by flat extensions. Linear Algebra Appl 502:104-125
Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A et al. (2016) Disk Density Tuning of a Maximal Random Packing. Comput Graph Forum 35:259-269
Wensel, Theodore G; Zhang, Zhixian; Anastassov, Ivan A et al. (2016) Structural and molecular bases of rod photoreceptor morphogenesis and disease. Prog Retin Eye Res 55:32-51
Edwards, John; Daniel, Eric; Pascucci, Valerio et al. (2015) Approximating the Generalized Voronoi Diagram of Closely Spaced Objects. Comput Graph Forum 34:299-309
Wensel, Theodore G; Gilliam, Jared C (2015) Three-dimensional architecture of murine rod cilium revealed by cryo-EM. Methods Mol Biol 1271:267-92
Jeter, Cameron B; Patel, Saumil S; Morris, Jeffrey S et al. (2015) Oculomotor executive function abnormalities with increased tic severity in Tourette syndrome. J Child Psychol Psychiatry 56:193-202
Zhang, Qin; Cha, Deukhyun; Bajaj, Chandrajit (2015) Quality Partitioned Meshing of Multi-Material Objects. Procedia Eng 124:187-199
Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I (2015) Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. Eur J Transl Myol 25:35-48
Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje et al. (2015) PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps. PLoS Comput Biol 11:e1004289
Baranovskiy, Andrey G; Zhang, Yinbo; Suwa, Yoshiaki et al. (2015) Crystal structure of the human primase. J Biol Chem 290:5635-46

Showing the most recent 10 out of 213 publications