This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The development of new materials can enable revolutionary versus evolutionary advances in science and technology. Our group is committed to the discovery and development of new nanoscale structures with an emphasis on controlling at different length scales with atomic precision the morphology, size, structure, composition and doping, since these will define and enable control over physical properties. Particular emphasis is being placed on developing modulated nanoscale wires, which provide dual functionality ?a device property and an interconnection ?required in any nanosystem. We recently demonstrated elements of a conceptual 'nanotectonic'synthesis approach for controlled elaboration of a two dimensional (2D) single crystalline superstructure using kinked semiconductor nanowires (our sample). We define and characterize a single crystalline 'secondary building unit'which serves as the basis of the novel stereo-modulation in nanowire systems. This unit consists of two arms, each with coherent growth direction and well defined size, one triangular joint, and a fixed 120 degree bridging angle. We want to characterize our kinked nanowire using 3D tomography. In particular, we want to know how the crystal facets evolve during the formation of such kinks, and the STEM cross-sections at different positions. The sample you have now is a IPA solution of kinked nanowires, and you can deposit the nanowires on appropriate TEM substrates.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR002250-25
Application #
8168599
Study Section
Special Emphasis Panel (ZRG1-BCMB-T (41))
Project Start
2010-01-15
Project End
2010-12-31
Budget Start
2010-01-15
Budget End
2010-12-31
Support Year
25
Fiscal Year
2010
Total Cost
$6,450
Indirect Cost
Name
Baylor College of Medicine
Department
Physiology
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Bucero, Marta Abril; Bajaj, Chandrajit; Mourrain, Bernard (2016) On the construction of general cubature formula by flat extensions. Linear Algebra Appl 502:104-125
Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A et al. (2016) Disk Density Tuning of a Maximal Random Packing. Comput Graph Forum 35:259-269
Wensel, Theodore G; Zhang, Zhixian; Anastassov, Ivan A et al. (2016) Structural and molecular bases of rod photoreceptor morphogenesis and disease. Prog Retin Eye Res 55:32-51
Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I (2015) Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment. Eur J Transl Myol 25:4803
Rushdi, Ahmad A; Mitchell, Scott A; Bajaj, Chandrajit L et al. (2015) Robust All-quad Meshing of Domains with Connected Regions. Procedia Eng 124:96-108
Edwards, John; Daniel, Eric; Pascucci, Valerio et al. (2015) Approximating the Generalized Voronoi Diagram of Closely Spaced Objects. Comput Graph Forum 34:299-309
Wensel, Theodore G; Gilliam, Jared C (2015) Three-dimensional architecture of murine rod cilium revealed by cryo-EM. Methods Mol Biol 1271:267-92
Jeter, Cameron B; Patel, Saumil S; Morris, Jeffrey S et al. (2015) Oculomotor executive function abnormalities with increased tic severity in Tourette syndrome. J Child Psychol Psychiatry 56:193-202
Zhang, Qin; Cha, Deukhyun; Bajaj, Chandrajit (2015) Quality Partitioned Meshing of Multi-Material Objects. Procedia Eng 124:187-199
Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I (2015) Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. Eur J Transl Myol 25:35-48

Showing the most recent 10 out of 213 publications