Collagen is the most abundant protein in vertebrates. It consists of three polypeptide chains that form an extended right-handed triple helix. Each polypeptide chain is composed of approximately 300 repeats of the sequence X-Y-Gly, where X is often a proline reside and Y is often proline or hydroxyproline residue. The gamma-substituted derivatives hydroxyproline and fluoroproline act to stabilize collagen. The purpose of this investigation is to use NMR to analyze the mechanisms by which the gamma-substituents effect on proline rings' conformation and configuration and therefore on the stability of colagen-like peptides. Homonuclear and heteronuclear vicinal spin-spin couplings in N-acetylproline methylester, N-acetyl-(S)-hydroxyproline methylester, and N-acetyl-4(S)-fluoroproline methylester will be obtained at temperatures ranging from 4?C to 43?C in 4?C intervals. The continuous probability distribution (CUPID) method will be applied to the coupling constants at each temperature for each proline derivative to determine ring pucker temerature profiles for both cis and trans configurations. The configurational analysis (determining the cis/trans ratio) for the varying temperatures and proline derivatives will also be determined by comparison of peak volumes for the cis and trans conformations. The results are expected to give new insights into the mechanism of collagen stabilization by -OH and -F substituents in the gamma-position of proline rings.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002301-14
Application #
6281588
Study Section
Project Start
1998-04-01
Project End
1999-02-28
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
14
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Travers, Timothy; López, Cesar A; Van, Que N et al. (2018) Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Sci Rep 8:8461
Thomas, Nathan E; Wu, Chao; Morrison, Emma A et al. (2018) The C terminus of the bacterial multidrug transporter EmrE couples drug binding to proton release. J Biol Chem 293:19137-19147
Assadi-Porter, Fariba M; Radek, James; Rao, Hongyu et al. (2018) Multimodal Ligand Binding Studies of Human and Mouse G-Coupled Taste Receptors to Correlate Their Species-Specific Sweetness Tasting Properties. Molecules 23:
Wijayatunga, Nadeeja N; Sams, Valerie G; Dawson, John A et al. (2018) Roux-en-Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity. Diabetes Metab Res Rev 34:e3045
Assadi-Porter, Fariba M; Reiland, Hannah; Sabatini, Martina et al. (2018) Metabolic Reprogramming by 3-Iodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression. Int J Mol Sci 19:
Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram et al. (2018) Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. MBio 9:
Franco, Aldo; Dovell, Sanaz; Möller, Carolina et al. (2018) Structural plasticity of mini-M conotoxins - expression of all mini-M subtypes by Conus regius. FEBS J 285:887-902
Wales, Jessica A; Chen, Cheng-Yu; Breci, Linda et al. (2018) Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase. J Biol Chem 293:1850-1864
Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina et al. (2017) Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol Rep 5:
Mong, Surin K; Cochran, Frank V; Yu, Hongtao et al. (2017) Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 56:5720-5725

Showing the most recent 10 out of 613 publications