This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The purpose of this project is to use the structure of the full length biotin-containing pyruvate carboxylase holoenzyme, which we have recently solved, to determine the details of the catalytic mechanism of this important metabolic enzyme.
Our specific aims are: 1) Use kinetic studies of wild type and key mutant enzymes to study the mechanism of the biotin carboxylase domain where MgATP and bicarbonate carboxylate biotin. Further X-ray structures will be obtained of mutants and with bound reactants other than MgATP. 2) Use kinetic studies of wild type and key mutant enzymes to study the mechanism of the carboxyl transferase domain where carboxybiotin converts pyruvate to oxaloacetate. Further X-ray structures will be obtained of mutants and with bound analogs of pyruvate.3) To clarify the role of acetyl-CoA as an allosteric activator, X-ray crystal structures will be determined in its absence as well as its presence. Structures will be determined with enzymes from sources where acetyl-CoA is not an activator. Structures will also be determined in the presence of aspartate, an allosteric inhibitor, to determine where it binds and how it affects the structural changes caused by acetyl-CoA.4) Investigation of the interdomain movement of biotin and carboxybiotin will be carried out using 1D and 2D NMR. [1-15N]-biotin and the methyl and acetyl analogs will be covalently attached to the enzyme using biotin ligase and a biotin auxotroph system. This label will allow us to probe the location and to what extent biotin is present in each domain.5) Carboxyphosphate will be synthesized by saturating a solution of tris[tetrabutylammonium] phosphate in dimethyl formamide with CO2. A small amount of this solution will be mixed in a stopped flow apparatus with enzyme, Mg2+, ADP and buffer and the resulting mixture analyzed for ATP formation with a firefly luciferase assay. If ATP is formed, this will establish carboxyphosphate as an intermediate in the reaction.The purpose of this project is to use the structure of the full length biotin-containing pyruvate carboxylase holoenzyme, which we have recently solved, to determine the details of the catalytic mechanism of this important metabolic enzyme.
Our specific aims are: 1) Use kinetic studies of wild type and key mutant enzymes to study the mechanism of the biotin carboxylase domain where MgATP and bicarbonate carboxylate biotin. Further X-ray structures will be obtained of mutants and with bound reactants other than MgATP. 2) Use kinetic studies of wild type and key mutant enzymes to study the mechanism of the carboxyl transferase domain where carboxybiotin converts pyruvate to oxaloacetate. Further X-ray structures will be obtained of mutants and with bound analogs of pyruvate.3) To clarify the role of acetyl-CoA as an allosteric activator, X-ray crystal structures will be determined in its absence as well as its presence. Structures will be determined with enzymes from sources where acetyl-CoA is not an activator. Structures will also be determined in the presence of aspartate, an allosteric inhibitor, to determine where it binds and how it affects the structural changes caused by acetyl-CoA.4) Investigation of the interdomain movement of biotin and carboxybiotin will be carried out using 1D and 2D NMR. [1-15N]-biotin and the methyl and acetyl analogs will be covalently attached to the enzyme using biotin ligase and a biotin auxotroph system. This label will allow us to probe the location and to what extent biotin is present in each domain.5) Carboxyphosphate will be synthesized by saturating a solution of tris[tetrabutylammonium] phosphate in dimethyl formamide with CO2. A small amount of this solution will be mixed in a stopped flow apparatus with enzyme, Mg2+, ADP and buffer and the resulting mixture analyzed for ATP formation with a firefly luciferase assay. If ATP is formed, this will establish carboxyphosphate as an intermediate in the reaction.
Showing the most recent 10 out of 613 publications