This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Transporter proteins perform a critical role, actively relaying molecules across the membrane barrier and against their concentration gradient. The goal of this project is to understand how these proteins act on a molecular level. This requires detailed structural knowledge coupled with dynamic information, including the timescale, amplitude and direction of structural changes, in order to build a 'movie'of the protein in action. NMR is uniquely suited to address these questions since kinetic data are measured simultaneously with the chemical shift, a direct manifestation of atomic resolution structure. The small multidrug resistance efflux protein, EmrE, provides an ideal model system to examine how molecular motion is coupled to a directed biological response. EmrE couples proton import to drive polyaromatic cation export in E. coli, thus conferring resistance to drugs of this type. Although the details are not known, protein conformational change must occur for proper transport, allowing alternating access to either side of the membrane in response to substrate binding. This project investigates the proposed transport model and the mechanism of the critical coupling between binding and transport in EmrE. This knowledge will aid efforts to combat the contribution of multidrug resistance transporters to bacterial antibiotic resistance.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR002301-25
Application #
8168993
Study Section
Special Emphasis Panel (ZRG1-BCMB-H (40))
Project Start
2010-03-01
Project End
2011-02-28
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
25
Fiscal Year
2010
Total Cost
$1,972
Indirect Cost
Name
University of Wisconsin Madison
Department
Biochemistry
Type
Schools of Earth Sciences/Natur
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Travers, Timothy; López, Cesar A; Van, Que N et al. (2018) Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Sci Rep 8:8461
Thomas, Nathan E; Wu, Chao; Morrison, Emma A et al. (2018) The C terminus of the bacterial multidrug transporter EmrE couples drug binding to proton release. J Biol Chem 293:19137-19147
Assadi-Porter, Fariba M; Radek, James; Rao, Hongyu et al. (2018) Multimodal Ligand Binding Studies of Human and Mouse G-Coupled Taste Receptors to Correlate Their Species-Specific Sweetness Tasting Properties. Molecules 23:
Wijayatunga, Nadeeja N; Sams, Valerie G; Dawson, John A et al. (2018) Roux-en-Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity. Diabetes Metab Res Rev 34:e3045
Assadi-Porter, Fariba M; Reiland, Hannah; Sabatini, Martina et al. (2018) Metabolic Reprogramming by 3-Iodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression. Int J Mol Sci 19:
Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram et al. (2018) Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. MBio 9:
Franco, Aldo; Dovell, Sanaz; Möller, Carolina et al. (2018) Structural plasticity of mini-M conotoxins - expression of all mini-M subtypes by Conus regius. FEBS J 285:887-902
Wales, Jessica A; Chen, Cheng-Yu; Breci, Linda et al. (2018) Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase. J Biol Chem 293:1850-1864
Mong, Surin K; Cochran, Frank V; Yu, Hongtao et al. (2017) Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 56:5720-5725
Bhute, Vijesh J; Bao, Xiaoping; Dunn, Kaitlin K et al. (2017) Metabolomics Identifies Metabolic Markers of Maturation in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Theranostics 7:2078-2091

Showing the most recent 10 out of 613 publications