In this project, atomic absorption spectroscopy, nuclear magnetic resonance spectroscopy, and ion selective electrodes are being used to characterize the relative fractions of magnesium in the ionized, protein-bound, and ligand-complexed pools of the blood for normal and sick preterm and term neonates as well as maternal blood and cord blood. The broad goal is to use this new technology to obtain a more complete characterization of the distribution of Mg in blood, which in turn will provide a better understanding of magnesium regulation in pregnant women, preterm and sick infants, and lead to useful new clinical information which may alter the present management of these patients. Our preliminary results demonstrate the feasibility of quantifying the Mg pools in plasma, and the potential for large variations in the size of these pools to occur in both mother and infant during and following MgSO4 therapy. The data demonstrate that the intravenous infusion of MgSO4 does not simply add Mg2+ ions to a static solution of plasma. Although it has been recognized that the kidney is the main regulatory organ of Mg homeostasis, the preliminary results suggest that plasma is capable of partially buffering acute increases in ionized Mg, probably due to a combination of Mg buffering from both high and low affinity Mg binding ligands present in blood. There are indications that the extent of this buffering increases in response to hypermagnesemia over a period of hours. (Collaborative 4) REPORT PERIOD: (09/01/97-08/31/98)

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002584-12
Application #
6205884
Study Section
Project Start
1999-08-15
Project End
2000-08-14
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
12
Fiscal Year
1999
Total Cost
Indirect Cost
City
Dallas
State
TX
Country
United States
Zip Code
75390
Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James et al. (2018) MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors. PLoS One 13:e0198065
Mishkovsky, Mor; Anderson, Brian; Karlsson, Magnus et al. (2017) Measuring glucose cerebral metabolism in the healthy mouse using hyperpolarized 13C magnetic resonance. Sci Rep 7:11719
Moreno, Karlos X; Harrison, Crystal E; Merritt, Matthew E et al. (2017) Hyperpolarized ?-[1-13 C]gluconolactone as a probe of the pentose phosphate pathway. NMR Biomed 30:
Funk, Alexander M; Anderson, Brian L; Wen, Xiaodong et al. (2017) The rate of lactate production from glucose in hearts is not altered by per-deuteration of glucose. J Magn Reson 284:86-93
Jin, Eunsook S; Moreno, Karlos X; Wang, Jian-Xiong et al. (2016) Metabolism of hyperpolarized [1-(13)C]pyruvate through alternate pathways in rat liver. NMR Biomed 29:466-74
Ren, Jimin; Sherry, A Dean; Malloy, Craig R (2016) A simple approach to evaluate the kinetic rate constant for ATP synthesis in resting human skeletal muscle at 7 T. NMR Biomed 29:1240-8
Zhang, Liang; Habib, Amyn A; Zhao, Dawen (2016) Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging. Oncotarget 7:38693-38706
Walker, Christopher M; Merritt, Matthew; Wang, Jian-Xiong et al. (2016) Use of a Multi-compartment Dynamic Single Enzyme Phantom for Studies of Hyperpolarized Magnetic Resonance Agents. J Vis Exp :e53607
Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C et al. (2016) pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent. Magn Reson Med 75:2432-41
Malloy, Craig R; Sherry, A Dean (2016) Biochemical Specificity in Human Cardiac Imaging by 13C Magnetic Resonance Imaging. Circ Res 119:1146-1148

Showing the most recent 10 out of 374 publications