This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The major goals of this project are to develop applications of paramagnetic chemical exchange saturation transfer (PARACEST) imaging agents when bound to antibody surfaces and as small molecule sensors of hypoxia. MRI is the imaging modality of choice for soft tissue imaging but in general lacks sufficient sensitivity for molecular imaging of biological processes associated with cancer. Although Gd-based contrast agents are widely used in clinical MRI as non-specific extracellular agents, new approaches need to be developed to bring MRI into competition with optical and nuclear molecular imaging modalities. Paramagnetic complexes based on chemical exchange saturation transfer (PARACEST) offer a new mechanism for MRI contrast that could potentially improve sensitivity substantially and at the same time offer the unique ability to modulate imaging contrast (on/off) plus reflect specific tissue environments or physiology (pH, redox state, glucose levels).
The first aim i s to develop a comprehensive mathematical model of the paraCEST effect to predict and understand experimental results. Next, we will continue to develop agents sentive to biologically relevant cations and molecules. The long term goal is to develop bifunctional ligands based on PARACEST for attachment to protein surface residues. These will be attached to model proteins and the water exchange characteristics of the resulting products will be evaluated and the lower detection limit of these systems evaluated by MRI.
Showing the most recent 10 out of 374 publications