This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. This project has two components. The first was intended to examine the biology of gut bacteria. Our adult intestine is home to an almost inconceivable number of micro-organisms. The size of the population up to 100 trillion far exceeds the size of all other microbial communities associated with our body s surfaces, and is equivalent to 10 times our total number of somatic and germ cells. The genomes of gut microbes may contain two orders of magnitude more genes than our own genome, and endow us with physiologic capacities we have not had to evolve on our own. Thus, it seems appropriate to view ourselves as a composite of many species and our genetic landscape as an amalgam of genes embedded in our H. sapiens genome and in the genomes of our affiliated microbial partners (the microbiome ). In other words, our microbiota and this microbiome are manifestations of who we are genetically and metabolically, and a reflection of our state of well-being. We are examining the genomic and metabolic foundations of host-bacterial mutualism (symbiosis) in the gut of the mouse. Because of the interest in interactions of gut flora with malignancy, the second project relates to detection of cancer. In this study we are using NMR to detect the transition to malignancy, again in a standard mouse model.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR002584-19
Application #
7357911
Study Section
Special Emphasis Panel (ZRG1-SBIB-Q (40))
Project Start
2006-09-01
Project End
2007-08-31
Budget Start
2006-09-01
Budget End
2007-08-31
Support Year
19
Fiscal Year
2006
Total Cost
$11,740
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James et al. (2018) MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors. PLoS One 13:e0198065
Mishkovsky, Mor; Anderson, Brian; Karlsson, Magnus et al. (2017) Measuring glucose cerebral metabolism in the healthy mouse using hyperpolarized 13C magnetic resonance. Sci Rep 7:11719
Moreno, Karlos X; Harrison, Crystal E; Merritt, Matthew E et al. (2017) Hyperpolarized ?-[1-13 C]gluconolactone as a probe of the pentose phosphate pathway. NMR Biomed 30:
Funk, Alexander M; Anderson, Brian L; Wen, Xiaodong et al. (2017) The rate of lactate production from glucose in hearts is not altered by per-deuteration of glucose. J Magn Reson 284:86-93
Malloy, Craig R; Sherry, A Dean (2016) Biochemical Specificity in Human Cardiac Imaging by 13C Magnetic Resonance Imaging. Circ Res 119:1146-1148
Moss, Lacy R; Mulik, Rohit S; Van Treuren, Tim et al. (2016) Investigation into the distinct subcellular effects of docosahexaenoic acid loaded low-density lipoprotein nanoparticles in normal and malignant murine liver cells. Biochim Biophys Acta 1860:2363-2376
Bastiaansen, Jessica A M; Merritt, Matthew E; Comment, Arnaud (2016) Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-(13)C]butyrate and [1-(13)C]pyruvate. Sci Rep 6:25573
Xing, Yixun; Jindal, Ashish K; Regueiro-Figueroa, Martín et al. (2016) The Relationship between NMR Chemical Shifts of Thermally Polarized and Hyperpolarized 89 Y Complexes and Their Solution Structures. Chemistry 22:16657-16667
Jin, Eunsook S; Moreno, Karlos X; Wang, Jian-Xiong et al. (2016) Metabolism of hyperpolarized [1-(13)C]pyruvate through alternate pathways in rat liver. NMR Biomed 29:466-74
Ren, Jimin; Sherry, A Dean; Malloy, Craig R (2016) A simple approach to evaluate the kinetic rate constant for ATP synthesis in resting human skeletal muscle at 7 T. NMR Biomed 29:1240-8

Showing the most recent 10 out of 374 publications