This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Recently we proposed a method for imaging glycogen by MRI through the interaction of the OH protons of glycogen with the water protons which can be measured using magnetization transfer. Briefly, the exchangeable protons (OH) in the glycogen molecule can be selectively irradiated with the correct proton NMR frequency. Because of the fast chemical exchange with water protons, this spin label can be detected through the water line, and hence through the conventional MRI experiment. Like other magnetization transfer experiments, the key is to compare the bulk water signal in the presence of irradiation of the OH protons of glycogen with the bulk water signal at the opposite frequency with respect to the water resonance. The exchange of the OH protons in glycogen can be detected as a significant difference between the normalized water signal intensities obtained by irradiating at these two frequencies. More sophisticated approaches are also feasible. For example, instead of using the minimum of two frequencies, a full Z-spectrum can be obtained. The asymmetry in the z spectrum can be attributed to exchangeable OH groups. Our group at Johns Hopkins has the capability of performing these studies independently in our 3T system. However, we would like to integrate the 2H NMR methods available in this RR so we can measure glycogenolysis in our patients in our magnet in Baltimore, ship the samples to Dallas, and compare liver glycogenolytic rates in humans by CEST to liver glycogenolytic rates by deuterium.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002584-21
Application #
7724131
Study Section
Special Emphasis Panel (ZRG1-SBIB-Q (40))
Project Start
2008-09-01
Project End
2009-08-31
Budget Start
2008-09-01
Budget End
2009-08-31
Support Year
21
Fiscal Year
2008
Total Cost
$31,374
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James et al. (2018) MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors. PLoS One 13:e0198065
Mishkovsky, Mor; Anderson, Brian; Karlsson, Magnus et al. (2017) Measuring glucose cerebral metabolism in the healthy mouse using hyperpolarized 13C magnetic resonance. Sci Rep 7:11719
Moreno, Karlos X; Harrison, Crystal E; Merritt, Matthew E et al. (2017) Hyperpolarized ?-[1-13 C]gluconolactone as a probe of the pentose phosphate pathway. NMR Biomed 30:
Funk, Alexander M; Anderson, Brian L; Wen, Xiaodong et al. (2017) The rate of lactate production from glucose in hearts is not altered by per-deuteration of glucose. J Magn Reson 284:86-93
Jin, Eunsook S; Moreno, Karlos X; Wang, Jian-Xiong et al. (2016) Metabolism of hyperpolarized [1-(13)C]pyruvate through alternate pathways in rat liver. NMR Biomed 29:466-74
Ren, Jimin; Sherry, A Dean; Malloy, Craig R (2016) A simple approach to evaluate the kinetic rate constant for ATP synthesis in resting human skeletal muscle at 7 T. NMR Biomed 29:1240-8
Zhang, Liang; Habib, Amyn A; Zhao, Dawen (2016) Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging. Oncotarget 7:38693-38706
Walker, Christopher M; Merritt, Matthew; Wang, Jian-Xiong et al. (2016) Use of a Multi-compartment Dynamic Single Enzyme Phantom for Studies of Hyperpolarized Magnetic Resonance Agents. J Vis Exp :e53607
Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C et al. (2016) pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent. Magn Reson Med 75:2432-41
Malloy, Craig R; Sherry, A Dean (2016) Biochemical Specificity in Human Cardiac Imaging by 13C Magnetic Resonance Imaging. Circ Res 119:1146-1148

Showing the most recent 10 out of 374 publications