This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff.
The aim of this project is to establish standard mouse phenotyping techniques to quantitatively evaluate liver gluconeogenesis, pyruvate recycling, the contribution of glycerol and Krebs cycle intermediates to glucose production, total glucose turnover, and citric acid cycle flux in live animals using a combination of 13C and 2H tracers and NMR spectroscopy. This standard metabolic assay provides the most comprehensive existing analysis of hepatic intermediary metabolism. It will be made available to on-campus and off-campus investigators having animal models of NIDDM or related disorders. In addition to the standard metabolic profile described above, a series of other phenotype specific metabolic techniques including a quantitative measure of substrate oxidation, measures of intracellular cations, and citric acid cycle flux using 13C enriched substrates will also be made available for selected animal models. A unique feature of this phenotyping center is that input will come from chemists, physicists, physiologists, computer scientists, physicians, and geneticists. All are recognized experts in 13C isotopomer analysis. A 600 MHz NMR spectrometer will be dedicated to this project. All mice selected for phenotyping will be subjected to a standard protocol performed by high-level technicians;the data will be analyzed and interpreted by NMR spectroscopists and biochemists and made available through an interactive web site designed to allow the external investigators to test a fit of their isotopomer data to alternative metabolic models. A basic research core will focus on improving sensitivity through indirect detection methods and develop methods to measure fat oxidation in vivo. Finally, an administrative core will coordinate the activities of the three research cores and interface discussions between external investigators and center scientists.
Showing the most recent 10 out of 374 publications