This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.We are developing software to implement multi-modal spectroscopy as a real-time guide to biopsy. The FastEEM spectrofluorometer collects reflectance and fluorescence spectra in a fraction of a second. These spectra are then calibrated to correct for the lineshape and intensity of the incident light and the background charge of the detector. Trimodal spectroscopic algorithms (diffuse reflectance, light scattering, and intrinsic fluorescence spectroscopy) are then used to extract tissue specific parameters such as nuclear size distribution, biochemical constituents such as NADH and collagen, and reduced scattering coefficients. These tissue parameters are then used to classify tissue as normal or diseased. The software will be particularly adapted for each tissue as the modeling varies somewhat for various tissue sites. We use the graphical programming environment of National Instruments LabView in combination with Matlab to implement these algorithms along with the control software for the FastEEMspectrofluorometer. Our spectral analysis algorithms require less than one second for tissue characterization. We also collect and store the error associated with each measurement.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002594-23
Application #
7722783
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Project Start
2008-06-01
Project End
2009-05-31
Budget Start
2008-06-01
Budget End
2009-05-31
Support Year
23
Fiscal Year
2008
Total Cost
$28,579
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Internal Medicine/Medicine
Type
Schools of Arts and Sciences
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Shih, Wei-Chuan; Bechtel, Kate L; Rebec, Mihailo V (2015) Noninvasive glucose sensing by transcutaneous Raman spectroscopy. J Biomed Opt 20:051036
Dudzik, Jonathan; Chang, Wen-Chi; Kannan, A M et al. (2013) Cross-linked glucose oxidase clusters for biofuel cell anode catalysts. Biofabrication 5:035009
Sathyavathi, R; Dingari, Narahara Chari; Barman, Ishan et al. (2013) Raman spectroscopy provides a powerful, rapid diagnostic tool for the detection of tuberculous meningitis in ex vivo cerebrospinal fluid samples. J Biophotonics 6:567-72
Dingari, Narahara Chari; Barman, Ishan; Saha, Anushree et al. (2013) Development and comparative assessment of Raman spectroscopic classification algorithms for lesion discrimination in stereotactic breast biopsies with microcalcifications. J Biophotonics 6:371-81
Cooper, Kimberly L; Oh, Seungeun; Sung, Yongjin et al. (2013) Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495:375-8
Sung, Yongjin; Tzur, Amit; Oh, Seungeun et al. (2013) Size homeostasis in adherent cells studied by synthetic phase microscopy. Proc Natl Acad Sci U S A 110:16687-92
Lau, Condon; Mirkovic, Jelena; Yu, Chung-Chieh et al. (2013) Early detection of high-grade squamous intraepithelial lesions in the cervix with quantitative spectroscopic imaging. J Biomed Opt 18:76013
Soares, Jaqueline S; Barman, Ishan; Dingari, Narahara Chari et al. (2013) Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications. Proc Natl Acad Sci U S A 110:471-6
Byun, HeeSu; Hillman, Timothy R; Higgins, John M et al. (2012) Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient. Acta Biomater 8:4130-8
Dingari, Narahara Chari; Barman, Ishan; Myakalwar, Ashwin Kumar et al. (2012) Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability. Anal Chem 84:2686-94

Showing the most recent 10 out of 178 publications